Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Curr Zool ; 68(3): 295-303, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35592342

ABSTRACT

The invasive snake Hemorrhois hippocrepis colonized the island of Ibiza (Balearic Islands) in 2003 as stowaways inside trunks of olive trees imported for gardening. It has quickly spread since 2010, posing a threat to the island's only remaining endemic vertebrate, the Ibiza wall lizard Podarcis pityusensis. We map the yearly expansion rate of the snake and estimate via transect surveys how severely it affects the distribution and abundance of the endemic lizard. As well, we surveyed 9 of 30 small lizard populations on islets surrounding Ibiza that have been isolated since the Last Glacial Maximum. Snakes had invaded 49% of Ibiza's land area by 2018, and censuses show a critical contrast in lizard abundance between areas with and without snakes; almost all censuses in areas without snakes show lizard presence whereas nearly all censuses in areas with H. hippocrepis lack lizard sightings. Moreover, at least one subspecies previously thriving on one of the offshore islets has become extinct, and there have been several snakes recorded swimming between Ibiza and the surrounding islets. Therefore, lizard populations have been dramatically reduced or have vanished within the range of the snake, and our results quantitatively support upgrading this species' threat level for extinction. This study can inform to programs to manage invasive snake populations and to conservation actions to recover the endemic lizard.

2.
Glob Ecol Conserv ; 31: e01847, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34761079

ABSTRACT

Despite islands contributing only 6.7% of land surface area, they harbor ~20% of the Earth's biodiversity, but unfortunately also ~50% of the threatened species and 75% of the known extinctions since the European expansion around the globe. Due to their geological and geographic history and characteristics, islands act simultaneously as cradles of evolutionary diversity and museums of formerly widespread lineages-elements that permit islands to achieve an outstanding endemicity. Nevertheless, the majority of these endemic species are inherently vulnerable due to genetic and demographic factors linked with the way islands are colonized. Here, we stress the great variation of islands in their physical geography (area, isolation, altitude, latitude) and history (age, human colonization, human density). We provide examples of some of the most species rich and iconic insular radiations. Next, we analyze the natural vulnerability of the insular biota, linked to genetic and demographic factors as a result of founder events as well as the typically small population sizes of many island species. We note that, whereas evolution toward island syndromes (including size shifts, derived insular woodiness, altered dispersal ability, loss of defense traits, reduction in clutch size) might have improved the ability of species to thrive under natural conditions on islands, it has simultaneously made island biota disproportionately vulnerable to anthropogenic pressures such as habitat loss, overexploitation, invasive species, and climate change. This has led to the documented extinction of at least 800 insular species in the past 500 years, in addition to the many that had already gone extinct following the arrival of first human colonists on islands in prehistoric times. Finally, we summarize current scientific knowledge on the ongoing biodiversity loss on islands worldwide and express our serious concern that the current trajectory will continue to decimate the unique and irreplaceable natural heritage of the world's islands. We conclude that drastic actions are urgently needed to bend the curve of the alarming rates of island biodiversity loss.

3.
Curr Zool ; 66(4): 363-371, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32617085

ABSTRACT

Knowing the causes of biological invasion success can be relevant to combat future invasive processes. The recent invasion of the horseshoe whip snake Hemorrhois hippocrepis on the island of Ibiza provides the opportunity to compare natural history traits between invasive and source populations, and to unravel what makes this snake a successful invader that is threatening the only endemic vertebrate of the island, Podarcis pityusensis. This study compares the basic reproductive traits of mainland native and invasive populations of the snake. Our results revealed that invasive populations were characterized by female maturity at a smaller size, extended reproductive period, and much lower reproduction frequency compared to the native population. In contrast, some major reproductive traits-the abdominal fat body cycle, clutch size, hatchling body size, and hatchling body condition, did not differ between the two populations. Some of these results must reflect the environmental differences in the recently invaded island with respect to the source area, and overall plasticity of reproductive traits. Plasticity is evolutionarily interesting, and may aid the successful growth of this species in their invasiveness of Mediterranean islands like Ibiza. The most significant finding is that this expression of phenotypic plasticity occurred rapidly in this invasive population, within a period of 14 years maximum. Our results on the reproduction ecology of the invasive population were not conclusive regarding the factors determining the invasiveness of the snake and pointed to alternative causes.

4.
Curr Zool, v. 66, n. 4, p. 363-371, ago. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3088

ABSTRACT

Knowing the causes of biological invasion success can be relevant to combat future invasive processes. The recent invasion of the horseshoe whip snake Hemorrhois hippocrepis on the island of Ibiza provides the opportunity to compare natural history traits between invasive and source populations, and to unravel what makes this snake a successful invader that is threatening the only endemic vertebrate of the island, Podarcis pityusensis. This study compares the basic reproductive traits of mainland native and invasive populations of the snake. Our results revealed that invasive populations were characterized by female maturity at a smaller size, extended reproductive period, and much lower reproduction frequency compared to the native population. In contrast, some major reproductive traits—the abdominal fat body cycle, clutch size, hatchling body size, and hatchling body condition, did not differ between the two populations. Some of these results must reflect the environmental differences in the recently invaded island with respect to the source area, and overall plasticity of reproductive traits. Plasticity is evolutionarily interesting, and may aid the successful growth of this species in their invasiveness of Mediterranean islands like Ibiza. The most significant finding is that this expression of phenotypic plasticity occurred rapidly in this invasive population, within a period of 14 years maximum. Our results on the reproduction ecology of the invasive population were not conclusive regarding the factors determining the invasiveness of the snake and pointed to alternative causes.

SELECTION OF CITATIONS
SEARCH DETAIL
...