Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Phylogenet Evol ; 187: 107891, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37517507

ABSTRACT

Species complexes consist of very close phylogenetic relatives, where morphological similarities make it difficult to distinguish between them using traditional taxonomic methods. Here, we focused on the long-standing challenge of species delimitation in the Mammillaria haageana complex, a group that presents great morphological diversity that makes its taxonomy a puzzle. Our work integrates genomic, morphological, and ecological data to establish the taxonomic limits in the M. haageana complex, and we also studied the evolutionary relationships with the remainder of the M. ser. Supertextae species. Our genetic analyses, as well as morphological and ecological evidence, led us to propose that the M. haageana complex is made up of six distinct entities (M. acultzingensis, M. conspicua, M. haageana, M. lanigera, M. meissneri, and M. san-angelensis), mainly as a result of ecological speciation. A recent taxonomic proposal considered these taxa as a single species; therefore, we propose their recognition at the species level. Our results also show a high level of incomplete lineage sorting rather than reticulation, which is especially likely in recently diverged species such as those comprising M. ser. Supertextae. The species hypotheses proposed here may be useful in future extinction risk assessments and conservation strategies.

2.
Am J Bot ; 109(5): 706-726, 2022 05.
Article in English | MEDLINE | ID: mdl-35526278

ABSTRACT

PREMISE: Accurate species delimitation is essential for evolutionary biology, conservation, and biodiversity management. We studied species delimitation in North American pinyon pines, Pinus subsection Cembroides, a natural group with high levels of incomplete lineage sorting. METHODS: We used coalescent-based methods and multivariate analyses of low-copy number nuclear genes and nearly complete high-copy number plastomes generated with the Hyb-Seq method. The three coalescent-based species delimitation methods evaluated were the Generalized Mixed Yule Coalescent (GMYC), Poisson Tree Process (PTP), and Trinomial Distribution of Triplets (Tr2). We also measured admixture in populations with possible introgression. RESULTS: Our results show inconsistencies among GMYC, PTP, and Tr2. The single-locus based GMYC analysis of plastid DNA recovered a higher number of species (up to 24 entities, including singleton lineages and clusters) than PTP and the multi-locus coalescent approach. The PTP analysis identified 10 species whereas Tr2 recovered 13, which agreed closely with taxonomic treatments. CONCLUSIONS: We found that PTP and GMYC identified species with low levels of ILS and high morphological divergence (P. maximartinezii, P. pinceana, and P. rzedowskii). However, GMYC method oversplit species by identification of more divergent samples as singletons. Moreover, both PTP and GMYC were incapable of identifying some species that are readily identified morphologically. We suggest that the divergence times between lineages within North American pinyon pines are so disparate that GMYC results are unreliable. Results of the Tr2 method coincided well with previous delimitations based on morphology, DNA, geography, and secondary chemistry.


Subject(s)
Cell Nucleus , Pinus , Cell Nucleus/genetics , DNA , North America , Phylogeny , Pinus/genetics
3.
Am J Bot ; 107(11): 1555-1566, 2020 11.
Article in English | MEDLINE | ID: mdl-33205396

ABSTRACT

PREMISE: Climate change is predicted to affect natural and plantation forests. The responses of conifers to overcome changing environments will depend on their adaptation to local conditions; however, intraspecific adaptive genetic variation is unknown for most gymnosperms. Studying genetic diversity associated with phenotypic variability along environmental gradients will enhance our understanding of adaptation and may reveal genetic pools important for conservation and management. METHODS: We used target enrichment and genome skimming to obtain single nucleotide polymorphisms (SNPs) from 61 individuals of Pinus patula, a pine tree native to Mexico widely used in plantation forestry. We investigated the adaptive genetic variation of two varieties with morphological and distributional differences potentially related to genetic and adaptive divergence. RESULTS: Population structure and haplotype network analyses revealed that genetic diversity between P. patula var. patula and P. patula var. longipedunculata was structured, even within populations of P. patula var. longipedunculata. We observed high genetic diversity, low inbreeding rate, and rapid linkage disequilibrium (LD) decay in the varieties. Based on outlier tests, loci showing signatures of natural selection were detected in geographically distant P. patula var. longipedunculata populations. For both varieties, we found significant correlations between climate-related environmental variation and SNP diversity at loci involved in abiotic stress, cell transport, defense, and cell wall biogenesis, pointing to local adaptation. CONCLUSIONS: Overall, significant intraspecific adaptive genetic variation in P. patula was detected, highlighting the presence of different genetic pools and signs of local adaptation that should be considered in forestry and conservation.


Subject(s)
Pinus , Acclimatization , Adaptation, Physiological/genetics , Genetic Variation , Mexico , Pinus/genetics , Polymorphism, Single Nucleotide , Selection, Genetic
4.
Front Plant Sci ; 11: 606809, 2020.
Article in English | MEDLINE | ID: mdl-33519858

ABSTRACT

The process of hybridization occurs in approximately 40% of vascular plants, and this exchange of genetic material between non-conspecific individuals occurs unequally among plant lineages, being more frequent in certain groups such as Opuntia (Cactaceae). This genus is known for multiple taxonomic controversies due to widespread polyploidy and probable hybrid origin of several of its species. Southern Mexico species of this genus have been poorly studied despite their great diversity in regions such as the Tehuacán-Cuicatlán Valley which contains around 12% of recognized Mexico's native Opuntia species. In this work, we focus on testing the hybrid status of two putative hybrids from this region, Opuntia tehuacana and Opuntia pilifera, and estimate if hybridization occurs among sampled southern opuntias using two newly identified nuclear intron markers to construct phylogenetic networks with HyDe and Dsuite and perform invariant analysis under the coalescent model with HyDe and Dsuite. For the test of hybrid origin in O. tehuacana, our results could not recover hybridization as proposed in the literature, but we found introgression into O. tehuacana individuals involving O. decumbens and O. huajuapensis. Regarding O. pilifera, we identified O. decumbens as probable parental species, supported by our analysis, which sustains the previous hybridization hypothesis between Nopalea and Basilares clades. Finally, we suggest new hybridization and introgression cases among southern Mexican species involving O. tehuantepecana and O. depressa as parental species of O. velutina and O. decumbens.

5.
Mol Neurobiol ; 56(6): 4037-4050, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30259400

ABSTRACT

L-DOPA is the main pharmacological therapy for Parkinson's disease. However, long-term exposure to L-DOPA induces involuntary movements termed dyskinesia. Clinical trials show that dyskinesia is attenuated by metabotropic glutamate receptor type 5 (mGluR5) antagonists. Further, the onset of dyskinesia is delayed by nicotine and mGluR5 expression is lower in smokers than in non-smokers. However, the mechanisms by which mGluR5 modulates dyskinesia and how mGluR5 and nicotine interact have not been established. To address these issues, we studied the role of mGluR5 in D1R-containing neurons in dyskinesia and examined whether nicotine reduces dyskinesia via mGluR5. In the aphakia mouse model of Parkinson's disease, we selectively knocked down mGluR5 in D1R-containing neurons (aphakia-mGluR5KD-D1). We found that genetic downregulation of mGluR5 decreased dyskinesia in aphakia mice. Although chronic nicotine increased the therapeutic effect of L-DOPA in both aphakia and aphakia-mGluR5KD-D1 mice, it caused a robust reduction in dyskinesia only in aphakia, and not in aphakia-mGluR5KD-D1 mice. Downregulating mGluR5 or nicotine treatment after L-DOPA decreased ERK and histone 3 activation, and FosB expression. Combining nicotine and mGluR5 knockdown did not have an added antidyskinetic effect, indicating that the effect of nicotine might be mediated by downregulation of mGluR5 expression. Treatment of aphakia-mGluR5KD-D1 mice with a negative allosteric modulator did not further modify dyskinesia, suggesting that mGluR5 in non-D1R-containing neurons does not play a role in its development. In conclusion, this work suggests that mGluR5 antagonists reduce dyskinesia by mainly affecting D1R-containing neurons and that the effect of nicotine on dyskinetic signs in aphakia mice is likely via mGluR5.


Subject(s)
Aphakia/complications , Corpus Striatum/pathology , Dyskinesia, Drug-Induced/genetics , Gene Knockdown Techniques , Levodopa/adverse effects , Neurons/metabolism , Receptor, Metabotropic Glutamate 5/genetics , Receptors, Dopamine D1/metabolism , Allosteric Regulation/drug effects , Animals , Biomarkers/metabolism , Down-Regulation/drug effects , Dyskinesia, Drug-Induced/complications , Dyskinesia, Drug-Induced/pathology , Female , Male , Mice, Inbred C57BL , Models, Biological , Neurons/pathology , Nicotine/pharmacology , Receptor, Metabotropic Glutamate 5/metabolism
6.
Sci Rep ; 8(1): 15381, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30337665

ABSTRACT

Increasing evidence supports a close relationship between Ras-ERK1/2 activation in the striatum and L-DOPA-induced dyskinesia (LID). ERK1/2 activation by L-DOPA takes place through the crosstalk between D1R/AC/PKA/DARPP-32 pathway and NMDA/Ras pathway. Compelling genetic and pharmacological evidence indicates that Ras-ERK1/2 inhibition prevents LID onset and may even revert already established dyskinetic symptoms. However, it is currently unclear whether exacerbation of Ras-ERK1/2 activity in the striatum may further aggravate dyskinesia in experimental animal models. Here we took advantage of two genetic models in which Ras-ERK1/2 signaling is hyperactivated, the Nf1+/- mice, in which the Ras inhibitor neurofibromin is reduced, and the Ras-GRF1 overexpressing (Ras-GRF1 OE) transgenic mice in which a specific neuronal activator of Ras is enhanced. Nf1+/- and Ras-GRF1 OE mice were unilaterally lesioned with 6-OHDA and treated with an escalating L-DOPA dosing regimen. In addition, a subset of Nf1+/- hemi-parkinsonian animals was also co-treated with the Ras inhibitor lovastatin. Our results revealed that Nf1+/- and Ras-GRF1 OE mice displayed similar dyskinetic symptoms to their wild-type counterparts. This observation was confirmed by the lack of differences between mutant and wild-type mice in striatal molecular changes associated to LID (i.e., FosB, and pERK1/2 expression). Interestingly, attenuation of Ras activity with lovastatin does not weaken dyskinetic symptoms in Nf1+/- mice. Altogether, these data suggest that ERK1/2-signaling activation in dyskinetic animals is maximal and does not require further genetic enhancement in the upstream Ras pathway. However, our data also demonstrate that such a genetic enhancement may reduce the efficacy of anti-dyskinetic drugs like lovastatin.


Subject(s)
Dyskinesia, Drug-Induced/drug therapy , Extracellular Signal-Regulated MAP Kinases/metabolism , Levodopa/toxicity , Lovastatin/pharmacology , Neurofibromin 1/physiology , ras Proteins/metabolism , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Dopamine Agents/toxicity , Dyskinesia, Drug-Induced/metabolism , Dyskinesia, Drug-Induced/pathology , Extracellular Signal-Regulated MAP Kinases/genetics , Female , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Male , Mice , Mice, Knockout , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Signal Transduction , ras Proteins/genetics
7.
Neurobiol Dis ; 102: 133-139, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28315782

ABSTRACT

Catechol-O-methyltransferase (COMT) degrades dopamine and its precursor l-DOPA and plays a critical role in regulating synaptic dopamine actions. We investigated the effects of heightened levels of COMT on dopamine-regulated motor behaviors and molecular alterations in a mouse model of dyskinesia. Transgenic mice overexpressing human COMT (TG) and their wildtype (WT) littermates received unilateral 6-OHDA lesions in the dorsal striatum and were treated chronically with l-DOPA for two weeks. l-DOPA-induced dyskinesia was exacerbated in TG mice without altering l-DOPA motor efficacy as determined by contralateral rotations or motor coordination. Inductions of FosB and phospho-acetylated histone 3 (molecular correlates of dyskinesia) were potentiated in the lesioned striatum of TG mice compared with their WT littermates. The TG mice had lower basal levels of dopamine in the striatum. In mice with lesions, l-DOPA induces a greater increase in the dopamine metabolite 3-methoxytyramine in the lesioned striatum of dyskinetic TG mice than in WT mice. The levels of serotonin and its metabolite were similar in TG and WT mice. Our results demonstrate that human COMT overexpression confers a heightened susceptibility to l-DOPA-induced dyskinesia and alters molecular and neurochemical responses in the lesioned striatum of mice.


Subject(s)
Antiparkinson Agents/toxicity , Catechol O-Methyltransferase/metabolism , Dyskinesia, Drug-Induced/metabolism , Levodopa/toxicity , Animals , Antiparkinson Agents/pharmacology , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Catechol O-Methyltransferase/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Disease Models, Animal , Disease Susceptibility , Dopamine/metabolism , Humans , Levodopa/pharmacology , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/physiology , Oxidopamine , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Serotonin/metabolism , Thioredoxin Reductase 2/genetics , Thioredoxin Reductase 2/metabolism
8.
Prog Neurobiol ; 155: 149-170, 2017 Aug.
Article in English | MEDLINE | ID: mdl-26455459

ABSTRACT

Amphetamine-related drugs, such as 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH), are popular recreational psychostimulants. Several preclinical studies have demonstrated that, besides having the potential for abuse, amphetamine-related drugs may also elicit neurotoxic and neuroinflammatory effects. The neurotoxic potentials of MDMA and METH to dopaminergic and serotonergic neurons have been clearly demonstrated in both rodents and non-human primates. This review summarizes the species-specific cellular and molecular mechanisms involved in MDMA and METH-mediated neurotoxic and neuroinflammatory effects, along with the most important behavioral changes elicited by these substances in experimental animals and humans. Emphasis is placed on the neuropsychological and neurological consequences associated with the neuronal damage. Moreover, we point out the gap in our knowledge and the need for developing appropriate therapeutic strategies to manage the neurological problems associated with amphetamine-related drug abuse.


Subject(s)
Brain/drug effects , Methamphetamine/adverse effects , N-Methyl-3,4-methylenedioxyamphetamine/adverse effects , Animals , Humans , Neurotoxicity Syndromes/pathology
9.
Cereb Cortex ; 27(1): 435-446, 2017 01 01.
Article in English | MEDLINE | ID: mdl-26483399

ABSTRACT

The dopamine D3 receptor (D3R) belongs to the dopamine D2-like receptor family and is principally located in the ventral striatum. However, previous studies reported D3R overexpression in the dorsal striatum following l-DOPA treatment in parkinsonian animals. This fact has drawn attention in the importance of D3R in l-DOPA-induced dyskinesia (LID). Here, we used D3R knockout mice to assess the role of D3R in LID and rotational sensitization in the hemiparkinsonian model. Mice lacking D3R presented a reduction in dyskinesia without interfering with the antiparkinsonian l-DOPA effect and were accompanied by a reduction in the l-DOPA-induced rotations. Interestingly, deleting D3R attenuated important molecular markers in the D1R-neurons such as FosB, extracellular signal-regulated kinase, and histone-3 (H3)-activation. Colocalization studies in D1R-tomato and D2R-green fluorescent protein BAC-transgenic mice indicated that l-DOPA-induced D3R overexpression principally occurs in D1R-containing neurons although it is also present in the D2R-neurons. Moreover, D3R pharmacological blockade with PG01037 reduced dyskinesia and the molecular markers expressed in D1R-neurons. In addition, this antagonist further reduced dyskinetic symptoms in D1R heterozygous mice, indicating a direct interaction between D1R and D3R. Together, our results demonstrate that D3R modulates the development of dyskinesia by targeting D1R-mediated intracellular signaling and suggest that decreasing D3R activity may help to ameliorate LID.


Subject(s)
Corpus Striatum/metabolism , Dopamine Agents/toxicity , Dyskinesia, Drug-Induced/metabolism , Levodopa/toxicity , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D3/metabolism , Animals , Corpus Striatum/drug effects , Mice , Mice, Knockout , Parkinsonian Disorders/metabolism
10.
J Neurochem ; 130(4): 472-89, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24773031

ABSTRACT

Dopamine replacement therapy in Parkinson's disease is associated with several unwanted effects, of which dyskinesia is the most disabling. The development of new therapeutic interventions to reduce the impact of dyskinesia in Parkinson's disease is therefore a priority need. This review summarizes the key molecular mechanisms that underlie dyskinesia. The role of dopamine receptors and their associated signaling mechanisms including dopamine-cAMP-regulated neuronal phosphoprotein, extracellular signal-regulated kinase, mammalian target of rapamycin, mitogen and stress-activated kinase-1 and Histone H3 are summarized, along with an evaluation of the role of cannabinoid and nicotinic acetylcholine receptors. The role of synaptic plasticity and animal behavioral results on dyskinesia are also evaluated. The most recent therapeutic advances to treat Parkinson's disease are discussed, with emphasis on the possibilities and limitations of non-pharmacological interventions such as physical activity, deep brain stimulation, transcranial magnetic field stimulation and cell replacement therapy. The review suggests new prospects for the management of Parkinson's disease-associated motor symptoms, especially the development of dyskinesia. This review aims at summarizing the key molecular mechanisms underlying dyskinesia and the most recent therapeutic advances to treat Parkinson's disease with emphasis on non-pharmacological interventions such as physical activity, deep brain stimulation (DBS), transcranial magnetic field stimulation (TMS) and cell replacement therapy. These new interventions are discussed from both the experimental and clinical point of view, describing their current strength and limitations.


Subject(s)
Dyskinesias/etiology , Dyskinesias/therapy , Parkinson Disease/complications , Parkinson Disease/therapy , Animals , Cannabinoids/pharmacology , Cell Transplantation , Chromatin/drug effects , Deep Brain Stimulation , Dopamine Agents/therapeutic use , Dopamine and cAMP-Regulated Phosphoprotein 32/physiology , Dyskinesias/physiopathology , Histones/metabolism , Humans , Levodopa/pharmacology , Levodopa/therapeutic use , Motor Activity/physiology , Parkinson Disease/physiopathology , Phosphorylation , Psychomotor Performance/physiology , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D1/metabolism , Signal Transduction/drug effects , Transcranial Magnetic Stimulation
11.
CNS Neurol Disord Drug Targets ; 11(7): 897-906, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23131151

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and its projections. Reports show a lower incidence of PD in smokers compared to nonsmokers. Nicotine reduce motor symptoms of patients already diagnosed with PD. However, the mechanisms underlying the effects of nicotine in the dopamine (DA) depleted striatum remain elusive. This study evaluates the effects of chronic nicotine administration on PD motor symptoms in an attempt to mimic the chronic self-administration of nicotine in smokers. To achieve this, we used the 6-OHDA hemiparkinson rat model evaluating the amphetamine/apomorphine induced circling behavior, in rats whose daily water intake included nicotine. We found that chronic nicotine reduced amphetamine (AMPH) induced circling behavior by 40%, whereas apomorphine (APO) increased this behavior by 230%. High-performance liquid chromatography (HPLC) revealed that AMPH produced a 50% decrease of DA release in the intact hemisphere, while on the striatum of the lesioned side, receptor binding assays showed an increased affinity to D1 receptors and a concurrent decrease in D2 receptors. c-Fos activity showed through double labeling, that cell types involved in nicotine action were low threshold (LTS) and fast spiking (FS) inter-neurons, which increased in the DA-depleted striatum. We also observed an increase in the activity of D1 medium spiny neurons (D1 MSN), a striatal population with a major role in motor control. Our results show that chronic nicotine does not specifically protect against degeneration, but rather modifies DA receptor dynamics, suggesting that it could be used as a therapeutic element in PD pathology.


Subject(s)
Antiparkinson Agents/therapeutic use , Corpus Striatum/drug effects , Disease Models, Animal , Interneurons/drug effects , Neuroprotective Agents/therapeutic use , Nicotine/therapeutic use , Parkinson Disease/prevention & control , Amphetamine/adverse effects , Animals , Apomorphine/therapeutic use , Behavior, Animal/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Dopamine/metabolism , Dopamine Agents/therapeutic use , Dopamine D2 Receptor Antagonists , Dopamine Uptake Inhibitors/adverse effects , Interneurons/metabolism , Male , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Oxidopamine , Parkinson Disease/metabolism , Parkinson Disease/pathology , Rats , Rats, Wistar , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/metabolism , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...