Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830054

ABSTRACT

Chimeric RNAs are often associated with chromosomal rearrangements in cancer. In addition, they are also widely detected in normal tissues, contributing to transcriptomic complexity. Despite their prevalence, little is known about the characteristics and functions of chimeric RNAs. Here, we examine the genetic structure and biological roles of CLEC12A-MIR223HG, a novel chimeric transcript produced by the fusion of the cell surface receptor CLEC12A and the miRNA-223 host gene (MIR223HG), first identified in chronic myeloid leukemia (CML) patients. Surprisingly, we observed that CLEC12A-MIR223HG is not just expressed in CML, but also in a variety of normal tissues and cell lines. CLEC12A-MIR223HG expression is elevated in pro-monocytic cells resistant to chemotherapy and during monocyte-to-macrophage differentiation. We observed that CLEC12A-MIR223HG is a product of trans-splicing rather than a chromosomal rearrangement and that transcriptional activation of CLEC12A with the CRISPR/Cas9 Synergistic Activation Mediator (SAM) system increases CLEC12A-MIR223HG expression. CLEC12A-MIR223HG translates into a chimeric protein, which largely resembles CLEC12A but harbours an altered C-type lectin domain altering key disulphide bonds. These alterations result in differences in post-translational modifications, cellular localization, and protein-protein interactions. Taken together, our observations support a possible involvement of CLEC12A-MIR223HG in the regulation of CLEC12A function. Our workflow also serves as a template to study other uncharacterized chimeric RNAs.


Subject(s)
Gene Fusion , Lectins, C-Type/genetics , Leukemia, Myeloid/genetics , MicroRNAs/genetics , Mutant Chimeric Proteins/genetics , Receptors, Mitogen/genetics , Trans-Splicing , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Differentiation/genetics , Cell Line , Cytarabine/pharmacology , Humans , Lectins, C-Type/metabolism , Leukemia, Myeloid/metabolism , MicroRNAs/metabolism , Mutant Chimeric Proteins/metabolism , Receptors, Mitogen/metabolism , Transcriptional Activation
2.
Microbiologyopen ; 10(5): e1238, 2021 10.
Article in English | MEDLINE | ID: mdl-34713605

ABSTRACT

Om45 is a major protein of the yeast's outer mitochondrial membrane under respiratory conditions. However, the cellular role of the protein has remained obscure. Previously, deletion mutant phenotypes have not been found, and clear amino acid sequence similarities that would allow inferring its functional role are not available. In this work, we describe synthetic petite mutants of GEM1 and UGO1 that depend on the presence of OM45 for respiratory growth, as well as the identification of several multicopy suppressors of the synthetic petite phenotypes. In the analysis of our mutants, we demonstrate that Om45p and Gem1p have a collaborative role in the maintenance of mitochondrial morphology, cristae structure, and mitochondrial DNA maintenance. A group of multicopy suppressors rescuing the synthetic lethal phenotypes of the mutants on non-fermentable carbon sources additionally supports this result. Our results imply that the synthetic petite phenotypes we observed are due to the disturbance of the inner mitochondrial membrane and point to this mitochondrial sub-compartment as the main target of action of Om45p, Ugo1p, and the yeast Miro GTPase Gem1p.


Subject(s)
Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , DNA, Fungal , DNA, Mitochondrial/metabolism , GTP Phosphohydrolases/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Precursor Protein Import Complex Proteins/genetics , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
3.
Hum Genet ; 140(11): 1593-1609, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33835239

ABSTRACT

We investigated the clinical, genetic, and pathological characteristics of a previously unknown severe juvenile brain disorder in several litters of Parson Russel Terriers. The disease started with epileptic seizures at 6-12 weeks of age and progressed rapidly to status epilepticus and death or euthanasia. Histopathological changes at autopsy were restricted to the brain. There was severe acute neuronal degeneration and necrosis diffusely affecting the grey matter throughout the brain with extensive intraneuronal mitochondrial crowding and accumulation of amyloid-ß (Aß). Combined homozygosity mapping and genome sequencing revealed an in-frame 6-bp deletion in the nuclear-encoded pitrilysin metallopeptidase 1 (PITRM1) encoding for a mitochondrial protease involved in mitochondrial targeting sequence processing and degradation. The 6-bp deletion results in the loss of two amino acid residues in the N-terminal part of PITRM1, potentially affecting protein folding and function. Assessment of the mitochondrial function in the affected brain tissue showed a significant deficiency in respiratory chain function. The functional consequences of the mutation were modeled in yeast and showed impaired growth in permissive conditions and an impaired respiration capacity. Loss-of-function variants in human PITRM1 result in a childhood-onset progressive amyloidotic neurological syndrome characterized by spinocerebellar ataxia with behavioral, psychiatric and cognitive abnormalities. Homozygous Pitrm1-knockout mice are embryonic lethal, while heterozygotes show a progressive, neurodegenerative phenotype characterized by impairment in motor coordination and Aß deposits. Our study describes a novel early-onset PITRM1-related neurodegenerative canine brain disorder with mitochondrial dysfunction, Aß accumulation, and lethal epilepsy. The findings highlight the essential role of PITRM1 in neuronal survival and strengthen the connection between mitochondrial dysfunction and neurodegeneration.


Subject(s)
Dog Diseases/genetics , Epilepsy/veterinary , Metalloendopeptidases/genetics , Mitochondria/metabolism , Neurodegenerative Diseases/veterinary , Amyloid beta-Peptides/metabolism , Animals , Brain/enzymology , Brain/metabolism , Brain/pathology , Dog Diseases/pathology , Dogs , Epilepsy/genetics , Female , Male , Metalloendopeptidases/chemistry , Metalloendopeptidases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Oxygen Consumption , Pedigree , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
4.
Cancer Res ; 81(4): 779-789, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33046441

ABSTRACT

Intron retention (IR) in cancer was for a long time overlooked by the scientific community, as it was previously considered to be an artifact of a dysfunctional spliceosome. Technological advancements made in the last decade offer unique opportunities to explore the role of IR as a widespread phenomenon that contributes to the transcriptional diversity of many cancers. Numerous studies in cancer have shed light on dysregulation of cellular mechanisms that lead to aberrant and pathologic IR. IR is not merely a mechanism of gene regulation, but rather it can mediate cancer pathogenesis and therapeutic resistance in various human diseases. The burden of IR in cancer is governed by perturbations to mechanisms known to regulate this phenomenon and include epigenetic variation, mutations within the gene body, and splicing factor dysregulation. This review summarizes possible causes for aberrant IR and discusses the role of IR in therapy or as a consequence of disease treatment. As neoepitopes originating from retained introns can be presented on the cancer cell surface, the development of personalized cancer vaccines based on IR-derived neoepitopes should be considered. Ultimately, a deeper comprehension about the origins and consequences of aberrant IR may aid in the development of such personalized cancer vaccines.


Subject(s)
Alternative Splicing/genetics , Introns/genetics , Neoplasms/genetics , Neoplasms/therapy , Animals , Cancer Vaccines/genetics , Cancer Vaccines/therapeutic use , Epigenesis, Genetic/physiology , Humans , Precision Medicine/methods , Precision Medicine/trends , Spliceosomes/genetics , Spliceosomes/metabolism
5.
Cancers (Basel) ; 12(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322625

ABSTRACT

Vast transcriptomics and epigenomics changes are characteristic of human cancers, including leukaemia. At remission, we assume that these changes normalise so that omics-profiles resemble those of healthy individuals. However, an in-depth transcriptomic and epigenomic analysis of cancer remission has not been undertaken. A striking exemplar of targeted remission induction occurs in chronic myeloid leukaemia (CML) following tyrosine kinase inhibitor (TKI) therapy. Using RNA sequencing and whole-genome bisulfite sequencing, we profiled samples from chronic-phase CML patients at diagnosis and remission and compared these to healthy donors. Remarkably, our analyses revealed that abnormal splicing distinguishes remission samples from normal controls. This phenomenon is independent of the TKI drug used and in striking contrast to the normalisation of gene expression and DNA methylation patterns. Most remarkable are the high intron retention (IR) levels that even exceed those observed in the diagnosis samples. Increased IR affects cell cycle regulators at diagnosis and splicing regulators at remission. We show that aberrant splicing in CML is associated with reduced expression of specific splicing factors, histone modifications and reduced DNA methylation. Our results provide novel insights into the changing transcriptomic and epigenomic landscapes of CML patients during remission. The conceptually unanticipated observation of widespread aberrant alternative splicing after remission induction warrants further exploration. These results have broad implications for studying CML relapse and treating minimal residual disease.

6.
Nucleic Acids Res ; 47(22): 11497-11513, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31724706

ABSTRACT

Intron retention (IR) is a form of alternative splicing that has long been neglected in mammalian systems although it has been studied for decades in non-mammalian species such as plants, fungi, insects and viruses. It was generally assumed that mis-splicing, leading to the retention of introns, would have no physiological consequence other than reducing gene expression by nonsense-mediated decay. Relatively recent landmark discoveries have highlighted the pivotal role that IR serves in normal and disease-related human biology. Significant technical hurdles have been overcome, thereby enabling the robust detection and quantification of IR. Still, relatively little is known about the cis- and trans-acting modulators controlling this phenomenon. The fate of an intron to be, or not to be, retained in the mature transcript is the direct result of the influence exerted by numerous intrinsic and extrinsic factors at multiple levels of regulation. These factors have altered current biological paradigms and provided unexpected insights into the transcriptional landscape. In this review, we discuss the regulators of IR and methods to identify them. Our focus is primarily on mammals, however, we broaden the scope to non-mammalian organisms in which IR has been shown to be biologically relevant.


Subject(s)
Alternative Splicing/genetics , Gene Expression Regulation/genetics , Introns/genetics , RNA, Messenger/genetics , Animals , Bacteria/genetics , Epigenesis, Genetic/genetics , Fungi/genetics , Humans , Nonsense Mediated mRNA Decay/genetics , Regulatory Sequences, Ribonucleic Acid/genetics
7.
Nucleic Acids Res ; 47(11): 5777-5791, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31216041

ABSTRACT

Utilization of non-AUG alternative translation start sites is most common in bacteria and viruses, but it has been also reported in other organisms. This phenomenon increases proteome complexity by allowing expression of multiple protein isoforms from a single gene. In Saccharomyces cerevisiae, a few described cases concern proteins that are translated from upstream near-cognate start codons as N-terminally extended variants that localize to mitochondria. Using bioinformatics tools, we provide compelling evidence that in yeast the potential for producing alternative protein isoforms by non-AUG translation initiation is much more prevalent than previously anticipated and may apply to as many as a few thousand proteins. Several hundreds of candidates are predicted to gain a mitochondrial targeting signal (MTS), generating an unrecognized pool of mitochondrial proteins. We confirmed mitochondrial localization of a subset of proteins previously not identified as mitochondrial, whose standard forms do not carry an MTS. Our data highlight the potential of non-canonical translation initiation in expanding the capacity of the mitochondrial proteome and possibly also other cellular features.


Subject(s)
Gene Expression Regulation, Fungal , Mitochondrial Proteins/metabolism , Protein Biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Codon, Initiator/metabolism , Computational Biology , Genetic Complementation Test , Humans , Mitochondria/genetics , Peptide Chain Initiation, Translational , Protein Isoforms/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
8.
Biochem J ; 474(22): 3783-3797, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28986507

ABSTRACT

Mitochondrial fatty acid synthesis (mtFAS) is a highly conserved pathway essential for mitochondrial biogenesis. The mtFAS process is required for mitochondrial respiratory chain assembly and function, synthesis of the lipoic acid cofactor indispensable for the function of several mitochondrial enzyme complexes and essential for embryonic development in mice. Mutations in human mtFAS have been reported to lead to neurodegenerative disease. The source of malonyl-CoA for mtFAS in mammals has remained unclear. We report the identification of a conserved vertebrate mitochondrial isoform of ACC1 expressed from an ACACA transcript splicing variant. A specific knockdown (KD) of the corresponding transcript in mouse cells, or CRISPR/Cas9-mediated inactivation of the putative mitochondrial targeting sequence in human cells, leads to decreased lipoylation and mitochondrial fragmentation. Simultaneous KD of ACSF3, encoding a mitochondrial malonyl-CoA synthetase previously implicated in the mtFAS process, resulted in almost complete ablation of protein lipoylation, indicating that these enzymes have a redundant function in mtFAS. The discovery of a mitochondrial isoform of ACC1 required for lipoic acid synthesis has intriguing consequences for our understanding of mitochondrial disorders, metabolic regulation of mitochondrial biogenesis and cancer.


Subject(s)
Acetyl-CoA Carboxylase/metabolism , Coenzyme A Ligases/metabolism , Malonyl Coenzyme A/metabolism , Mitochondria/pathology , Acetyl-CoA Carboxylase/genetics , Amino Acid Sequence , Animals , Cell Line , Coenzyme A Ligases/genetics , Conserved Sequence , Gene Expression Regulation, Enzymologic , Gene Knockdown Techniques , Humans , Isoenzymes , Malonyl Coenzyme A/genetics , Mice , Mitochondria/enzymology , RNA, Small Interfering , Thioctic Acid
9.
Article in English | MEDLINE | ID: mdl-27553474

ABSTRACT

Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the "classic" cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both ß-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.


Subject(s)
Fatty Acids/metabolism , Mitochondria/metabolism , Mitochondria/physiology , Acyl Carrier Protein/metabolism , Animals , Cell Respiration/physiology , Humans , Lipid Metabolism/physiology , Lipogenesis/physiology , Oxidation-Reduction
10.
PLoS One ; 9(12): e114738, 2014.
Article in English | MEDLINE | ID: mdl-25503745

ABSTRACT

The Saccharomyces cerevisiae genome encodes two sequence related acetyl-CoA carboxylases, the cytosolic Acc1p and the mitochondrial Hfa1p, required for respiratory function. Several aspects of expression of the HFA1 gene and its evolutionary origin have remained unclear. Here, we determined the HFA1 transcription initiation sites by 5' RACE analysis. Using a novel "Stop codon scanning" approach, we mapped the location of the HFA1 translation initiation site to an upstream AUU codon at position -372 relative to the annotated start codon. This upstream initiation leads to production of a mitochondrial targeting sequence preceding the ACC domains of the protein. In silico analyses of fungal ACC genes revealed conserved "cryptic" upstream mitochondrial targeting sequences in yeast species that have not undergone a whole genome duplication. Our Δhfa1 baker's yeast mutant phenotype rescue studies using the protoploid Kluyveromyces lactis ACC confirmed functionality of the cryptic upstream mitochondrial targeting signal. These results lend strong experimental support to the hypothesis that the mitochondrial and cytosolic acetyl-CoA carboxylases in S. cerevisiae have evolved from a single gene encoding both the mitochondrial and cytosolic isoforms. Leaning on a cursory survey of a group of genes of our interest, we propose that cryptic 5' upstream mitochondrial targeting sequences may be more abundant in eukaryotes than anticipated thus far.


Subject(s)
Acetyl-CoA Carboxylase/biosynthesis , Acetyl-CoA Carboxylase/genetics , Evolution, Molecular , Gene Expression Regulation, Fungal , Mitochondria/genetics , Mitochondrial Proteins/biosynthesis , Mitochondrial Proteins/genetics , Peptide Chain Initiation, Translational , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , 5' Untranslated Regions/genetics , Base Sequence , Codon, Initiator/genetics , Kluyveromyces/genetics , Mitochondria/enzymology , Molecular Sequence Data , Mutation , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...