Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 20(5): 707-725, 2022 09.
Article in English | MEDLINE | ID: mdl-35894090

ABSTRACT

Biogeochemical cycling of sulfur is relatively understudied in terrestrial environments compared to marine environments. However, the comparative ease of access, observation, and sampling of terrestrial settings can expand our understanding of organisms and processes important in the modern sulfur cycle. Furthermore, these sites may allow for the discovery of useful process analogs for ancient sulfur-metabolizing microbial communities at times in Earth's past when atmospheric O2 concentrations were lower and sulfide was more prevalent in Earth surface environments. We identified a new site at Santa Paula Creek (SPC) in Ventura County, CA-a remarkable freshwater, gravel-bedded mountain stream charged with a range of oxidized and reduced sulfur species and heavy hydrocarbons from the emergence of subsurface fluids within the underlying sulfur- and organic-rich Miocene-age Monterey Formation. SPC hosts a suite of morphologically distinct microbial biofacies that form in association with the naturally occurring hydrocarbon seeps and sulfur springs. We characterized the geology, stream geochemistry, and microbial facies and diversity of the Santa Paula Creek ecosystem. Using geochemical analyses and 16S rRNA gene sequencing, we found that SPC supports a dynamic sulfur cycle that is largely driven by sulfide-oxidizing microbial taxa, with contributions from smaller populations of sulfate-reducing and sulfur-disproportionating taxa. This preliminary characterization of SPC revealed an intriguing site in which to study geological and geochemical controls on microbial community composition and to expand our understanding of sulfur cycling in terrestrial environments.


Subject(s)
Microbiota , Sulfur , California , Hydrocarbons , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfides
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161271

ABSTRACT

Desert varnish is a dark rock coating that forms in arid environments worldwide. It is highly and selectively enriched in manganese, the mechanism for which has been a long-standing geological mystery. We collected varnish samples from diverse sites across the western United States, examined them in petrographic thin section using microscale chemical imaging techniques, and investigated the associated microbial communities using 16S amplicon and shotgun metagenomic DNA sequencing. Our analyses described a material governed by sunlight, water, and manganese redox cycling that hosts an unusually aerobic microbial ecosystem characterized by a remarkable abundance of photosynthetic Cyanobacteria in the genus Chroococcidiopsis as the major autotrophic constituent. We then showed that diverse Cyanobacteria, including the relevant Chroococcidiopsis taxon, accumulate extraordinary amounts of intracellular manganese-over two orders of magnitude higher manganese content than other cells. The speciation of this manganese determined by advanced paramagnetic resonance techniques suggested that the Cyanobacteria use it as a catalytic antioxidant-a valuable adaptation for coping with the substantial oxidative stress present in this environment. Taken together, these results indicated that the manganese enrichment in varnish is related to its specific uptake and use by likely founding members of varnish microbial communities.


Subject(s)
Ecological and Environmental Phenomena , Geologic Sediments/chemistry , Manganese/analysis , Antioxidants/metabolism , Cyanobacteria/metabolism , Geologic Sediments/microbiology , Microbiota , Oxidation-Reduction , Sunlight , Water
3.
Geobiology ; 19(4): 376-393, 2021 07.
Article in English | MEDLINE | ID: mdl-33629529

ABSTRACT

Mono Lake is a closed-basin, hypersaline, alkaline lake located in Eastern Sierra Nevada, California, that is dominated by microbial life. This unique ecosystem offers a natural laboratory for probing microbial community responses to environmental change. In 2017, a heavy snowpack and subsequent runoff led Mono Lake to transition from annually mixed (monomictic) to indefinitely stratified (meromictic). We followed microbial succession during this limnological shift, establishing a two-year (2017-2018) water-column time series of geochemical and microbiological data. Following meromictic conditions, anoxia persisted below the chemocline and reduced compounds such as sulfide and ammonium increased in concentration from near 0 to ~400 and ~150 µM, respectively, throughout 2018. We observed significant microbial succession, with trends varying by water depth. In the epilimnion (above the chemocline), aerobic heterotrophs were displaced by phototrophic genera when a large bloom of cyanobacteria appeared in fall 2018. Bacteria in the hypolimnion (below the chemocline) had a delayed, but systematic, response reflecting colonization by sediment "seed bank" communities. Phototrophic sulfide-oxidizing bacteria appeared first in summer 2017, followed by microbes associated with anaerobic fermentation in spring 2018, and eventually sulfate-reducing taxa by fall 2018. This slow shift indicated that multi-year meromixis was required to establish a sulfate-reducing community in Mono Lake, although sulfide oxidizers thrive throughout mixing regimes. The abundant green alga Picocystis remained the dominant primary producer during the meromixis event, abundant throughout the water column including in the hypolimnion despite the absence of light and prevalence of sulfide. Our study adds to the growing literature describing microbial resistance and resilience during lake mixing events related to climatic events and environmental change.


Subject(s)
Ecosystem , Lakes , Bacteria , California , Phylogeny
4.
Free Radic Biol Med ; 140: 113-125, 2019 08 20.
Article in English | MEDLINE | ID: mdl-30738765

ABSTRACT

Throughout the history of life on Earth, abiotic components of the environment have shaped the evolution of life, and in turn life has shaped the environment. The element manganese embodies a special aspect of this collaboration; its history is closely entwined with those of photosynthesis and O2-two reigning features that characterize the biosphere today. Manganese chemistry was central to the environmental context and evolutionary innovations that enabled the origin of oxygenic photosynthesis and the ensuing rise of O2. It was also manganese chemistry that provided an early, fortuitous antioxidant system that was instrumental in how life came to cope with oxidative stress and ultimately thrive in an aerobic world. Subsequently, the presence of O2 transformed the biogeochemical dynamics of the manganese cycle, enabling a rich suite of environmental and biological processes involving high-valent manganese and manganese redox cycling. Here, we describe insights from chemistry, biology, and geology, to examine manganese dynamics in the environment, and its unique role in the history of life.


Subject(s)
Biological Evolution , Earth, Planet , Manganese/metabolism , Oxygen/metabolism , Manganese/chemistry , Oxidation-Reduction , Oxygen/chemistry , Photosynthesis
5.
Environ Sci Technol ; 52(21): 12265-12274, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30257556

ABSTRACT

The flavins (including flavin mononucleotide (FMN) and riboflavin (RF)) are a class of organic compounds synthesized by organisms to assist in critical redox reactions. While known to be secreted extracellularly by some species in laboratory-based cultures, flavin concentrations are largely unreported in the natural environment. Here, we present pore water and water column profiles of extracellular flavins (FMN and RF) and two degradation products (lumiflavin and lumichrome) from a coastal marine basin in the Southern California Bight alongside ancillary geochemical and 16S rRNA microbial community data. Flavins were detectable at picomolar concentrations in the water column (93-300 pM FMN, 14-40 pM RF) and low nanomolar concentrations in pore waters (250-2070 pM FMN, 11-210 pM RF). Elevated pore water flavin concentrations displayed an increasing trend with sediment depth and were significantly correlated with the total dissolved Fe (negative) and Mn (positive) concentrations. Network analysis revealed a positive relationship between flavins and the relative abundance of Dehalococcoidia and the MSBL9 clade of Planctomycetes, indicating possible secretion by members of these lineages. These results suggest that flavins are a common component of the so-called shared extracellular metabolite pool, especially in anoxic marine sediments where they exist at physiologically relevant concentrations for metal oxide reduction.


Subject(s)
Flavins , Microbiota , California , Flavin Mononucleotide , Oxidation-Reduction , RNA, Ribosomal, 16S , Riboflavin
6.
Front Microbiol ; 6: 434, 2015.
Article in English | MEDLINE | ID: mdl-26029181

ABSTRACT

Vitamin B1, or thiamin, can limit primary productivity in marine environments, however the major marine environmental sources of this essential coenzyme remain largely unknown. Vitamin B1 can only be produced by organisms that possess its complete synthesis pathway, while other organisms meet their cellular B1 quota by scavenging the coenzyme from exogenous sources. Due to high bacterial cell density and diversity, marine sediments could represent some of the highest concentrations of putative B1 producers, yet these environments have received little attention as a possible source of B1 to the overlying water column. Here we report the first dissolved pore water profiles of B1 measured in cores collected in two consecutive years from Santa Monica Basin, CA. Vitamin B1 concentrations were fairly consistent between the two years ranging from 30 pM up to 770 pM. A consistent maximum at ~5 cm sediment depth covaried with dissolved concentrations of iron. Pore water concentrations were higher than water column levels and represented some of the highest known environmental concentrations of B1 measured to date, (over two times higher than maximum water column concentrations) suggesting increased rates of cellular production and release within the sediments. A one dimensional diffusion-transport model applied to the B1 profile was used to estimate a diffusive benthic flux of ~0.7 nmol m(-2) d(-1). This is an estimated flux across the sediment-water interface in a deep sea basin; if similar magnitude B-vitamin fluxes occur in shallow coastal waters, benthic input could prove to be a significant B1-source to the water column and may play an important role in supplying this organic growth factor to auxotrophic primary producers.

SELECTION OF CITATIONS
SEARCH DETAIL
...