Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(11): e0186672, 2017.
Article in English | MEDLINE | ID: mdl-29149184

ABSTRACT

BACKGROUND: Elevated cholesterol has been linked to cardiovascular disease in adults and preclinical markers of atherosclerosis in children, thus reducing saturated (SFA) and trans-fatty acids (TFA) intake from an early age may help to reduce cholesterol and the risk of cardiovascular disease later in life. The aim of this review is to examine the evidence for health effects associated with reducing SFA and TFA intake in free-living children, adolescents and young adults between 2 to 19 years of age. DESIGN: Systematic review and meta-analysis of randomised controlled trials (RCTs) and prospective cohort studies. Study selection, assessment, validity, data extraction, and analysis were undertaken as specified by the Cochrane Collaboration and the GRADE working group. Data were pooled using inverse variance models with random effects. DATA SOURCES: EMBASE; PubMed; Cochrane Central Register of Controlled Trials; LILACS; and WHO Clinical Trial Registry (up to July 2016). ELIGIBILITY CRITERIA FOR SELECTING TRIALS: RCTs involving dietary interventions aiming to reduce SFA or TFA intakes and a control group, and cohort studies reporting the effects of SFA or TFA exposures, on outcomes including blood lipids; measures of growth; blood pressure; insulin resistance; and potential adverse effects. Minimum duration was 13 days for RCTs and one year for cohort studies. Trials of weight loss or confounded by additional medical or lifestyle interventions were excluded. RESULTS: Compared with control diets, there was a highly statistically significant effect of reduced SFA intake on total cholesterol (mean difference (MD) -0.16 mmol/l, [95% confidence interval (CI): -0.25 to -0.07]), LDL cholesterol (MD -0.13 mmol/l [95% CI:-0.22 to -0.03]) and diastolic blood pressure (MD -1.45 mmol/l [95% CI:-2.34 to -0.56]). There were no significant effects on any other risk factors and no evidence of adverse effects. CONCLUSIONS: Advice to reduce saturated fatty acids intake of children results in a significant reduction in total and LDL-cholesterol levels as well as diastolic blood pressure without evidence of adverse effects on growth and development. Dietary guidelines for children and adolescents should continue to recommend diets low in saturated fat.


Subject(s)
Fatty Acids/pharmacology , Trans Fatty Acids/pharmacology , Adolescent , Child , Child, Preschool , Humans
2.
Proc Natl Acad Sci U S A ; 102(7): 2537-42, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15699332

ABSTRACT

Food restriction and weight loss result in reduced plasma leptin, which is associated with a pleiotropic biologic response. However, because weight loss itself is also associated with changes in numerous other humoral and metabolic signals, it can be difficult to determine the precise features of the biologic response to acute leptin deficiency. To study this response in the absence of changes in nutritional state, we have developed a protocol that allows such analysis in normal, non-food-restricted animals. Wild-type mice are treated with high-dose leptin until fat mass is depleted and, as a consequence, endogenous leptin production is reduced. At this point, exogenous leptin is abruptly withdrawn, thus inducing a state of leptin deficiency in otherwise normal mice. Leptin deficiency is sustained by feeding the animals only as much as they consumed voluntarily before leptin withdrawal. The biologic response to leptin deficiency induced in this manner includes altered neuropeptide levels, decreased energy expenditure, and impaired reproductive and immune function. Replacement of leptin at physiological concentrations after withdrawal of high-dosage leptin blunts, but does not completely block, the hyperphagia and weight regain caused by acute leptin deficiency, nor does it correct the resulting reproductive and immune dysfunction. This suggests that high-dosage leptin treatment induces a state of partial leptin resistance. In aggregate, these studies establish the role of acute hypoleptinemia in regulating energy balance, the immune system, and reproductive function, and further suggest that high-dosage leptin treatment can induce a state of acquired leptin resistance.


Subject(s)
Leptin/deficiency , Animals , Drug Resistance , Eating/physiology , Energy Metabolism , Female , Immunity , Leptin/administration & dosage , Leptin/physiology , Mice , Mice, Inbred C57BL , Mice, Obese , Neurosecretory Systems/physiology
3.
J Neurosci ; 23(18): 7143-54, 2003 Aug 06.
Article in English | MEDLINE | ID: mdl-12904474

ABSTRACT

The melanocortin-4 receptor (MC4-R) is an important regulator of energy homeostasis, and evidence suggests that MC4-R-expressing neurons are downstream targets of leptin action. MC4-Rs are broadly expressed in the CNS, and the distribution of MC4-R mRNA has been analyzed most extensively in the rat. However, relatively little is known concerning chemical profiles of MC4-R-expressing neurons. The extent to which central melanocortins act presynaptically or postsynaptically on MC4-Rs is also unknown. To address these issues, we have generated a transgenic mouse line expressing green fluorescent protein (GFP) under the control of the MC4-R promoter, using a modified bacterial artificial chromosome. We have confirmed that the CNS distribution of GFP-producing cells is identical to that of MC4-R mRNA in wild-type mice and that nearly all GFP-producing cells coexpress MC4-R mRNA. For example, cells coexpressing GFP and MC4-R mRNA were distributed in the paraventricular hypothalamic nucleus (PVH) and the dorsal motor nucleus of the vagus (DMV). MC4-R promotor-driven GFP expression was found in PVH cells producing thyrotropin-releasing hormone and in cholinergic DMV cells. Finally, we have observed that a synthetic MC3/4-R agonist, MT-II, depolarizes some GFP-expressing cells, suggesting that MC4-Rs function postsynaptically in some instances and may function presynaptically in others. These studies extend our knowledge of the distribution and function of the MC4-R. The transgenic mouse line should be useful for future studies on the role of melanocortin signaling in regulating feeding behavior and autonomic homeostasis.


Subject(s)
Gene Expression/physiology , Luminescent Proteins/biosynthesis , Promoter Regions, Genetic/physiology , Receptors, Corticotropin/genetics , Animals , Brain/anatomy & histology , Brain/metabolism , Brain/physiology , Chromosomes, Artificial, Bacterial , Green Fluorescent Proteins , Hypothalamus/cytology , Hypothalamus/physiology , In Vitro Techniques , Ligands , Luminescent Proteins/genetics , Medulla Oblongata/metabolism , Mice , Mice, Transgenic , Neurons/metabolism , Neurons/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Patch-Clamp Techniques , RNA, Messenger/biosynthesis , Receptor, Melanocortin, Type 4 , Receptors, Corticotropin/biosynthesis , Vagus Nerve/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...