Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 27(9): 1960-7, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17569879

ABSTRACT

OBJECTIVE: Endothelin-1 (ET-1) and angiotensin II (Ang II) activate common signaling pathways to promote changes in vascular reactivity, remodeling, inflammation, and oxidative stress. Here we sought to determine whether upstream regulators of mitogen-activated protein kinases (MAPKs) are differentially regulated by ET-1 and Ang II focusing on the role of c-Src and the small GTPase Ras. METHODS AND RESULTS: Mesenteric vascular smooth muscle cells (VSMCs) from mice with different disruption levels in the c-Src gene (c-Src(+/-) and c-Src(-/-)) and wild-type (c-Src(+/+)) were used. ET-1 and Ang II induced extracellular signal-regulated kinase (ERK) 1/2, SAPK/JNK, and p38MAPK phosphorylation in c-Src(+/+) VSMCs. In VSMCs from c-Src(+/-) and c-Src(-/-), Ang II effects were blunted, whereas c-Src deficiency had no effect in ET-1-induced MAPK activation. Ang II but not ET-1 induced c-Src phosphorylation in c-Src(+/+) VSMCs. Activation of c-Raf, an effector of Ras, was significantly increased by ET-1 and Ang II in c-Src(+/+) VSMCs. Ang II but not ET-1-mediated c-Raf phosphorylation was inhibited by c-Src deficiency. Knockdown of Ras by siRNA inhibited both ET-1 and Ang II-induced MAPK phosphorylation. CONCLUSIONS: Our data indicate differential regulation of MAPKs by distinct G protein-coupled receptors. Whereas Ang II has an obligatory need for c-Src, ET-1 mediates its actions through a c-Src-independent Ras-Raf-dependent pathway for MAPK activation. These findings suggest that Ang II and ET-1 can activate similar signaling pathways through unrelated mechanisms. MAP kinases are an important point of convergence for Ang II and ET-1.


Subject(s)
Angiotensin II/physiology , Endothelin-1/physiology , MAP Kinase Signaling System/physiology , Monomeric GTP-Binding Proteins/physiology , Muscle, Smooth, Vascular/enzymology , Animals , CSK Tyrosine-Protein Kinase , Cells, Cultured , Mice , Mitogen-Activated Protein Kinases/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Protein-Tyrosine Kinases/physiology , src-Family Kinases
2.
Peptides ; 26(8): 1454-62, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16042985

ABSTRACT

We investigated whether gender differences in renal damage in DOCA-salt hypertension are associated with effects of ovarian hormones and/or endothelin-1 (ET-1). Renal injuries and renal pre-pro-ET-1 mRNA expression were enhanced in male and female ovariectomized (OVX) DOCA rats versus female DOCA rats. Treatment with estrogen plus progesterone or progesterone, but not estrogen alone, attenuated renal damage and pre-pro-ET-1 mRNA expression in OVX DOCA rats. The ETA antagonist BMS182874 greatly ameliorated renal damage in male and OVX DOCA rats. In conclusion, the ovarian hormones have a protective role on the renal structural alterations in female DOCA rats by modulating effects of ET-1, via ETA receptors.


Subject(s)
Endothelin-1/pharmacology , Kidney Diseases/prevention & control , Kidney/drug effects , Sex Characteristics , Animals , Dansyl Compounds/pharmacology , Desoxycorticosterone/antagonists & inhibitors , Desoxycorticosterone/chemistry , Disease Models, Animal , Endothelin-1/genetics , Estrogens/pharmacology , Female , Hydralazine/pharmacology , Hypertension/chemically induced , Hypertension/physiopathology , Hypertension/prevention & control , Kidney/chemistry , Kidney/physiopathology , Kidney Diseases/chemically induced , Kidney Diseases/physiopathology , Male , Ovariectomy/methods , Progesterone/pharmacology , RNA, Messenger/genetics , Rats , Rats, Wistar , Receptor, Endothelin A/drug effects , Sodium Chloride
3.
Braz J Med Biol Res ; 35(9): 1061-8, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12219177

ABSTRACT

We determined if the increased vascular responsiveness to endothelin-1 (ET-1) observed in male, but not in female, DOCA-salt rats is associated with differential vascular mRNA expression of ET-1 and/or ET A/ET B receptors or with functional differences in Ca2+ handling mechanisms by vascular myocytes. Uninephrectomized male and female Wistar rats received DOCA and drinking water containing NaCl/KCl. Control rats received vehicle and tap water. Blood pressure and contractile responses of endothelium-denuded aortic rings to agents which induce Ca2+ influx and/or its release from internal stores were measured using standard procedures. Expression of mRNA for ET-1 and ET A/ET B receptors was evaluated by RT-PCR after isolation of total cell RNA from both aorta and mesenteric arteries. Systolic blood pressure was higher in male than in female DOCA rats. Contractions induced by Bay K8644 (which activates Ca2+ influx through voltage-operated L-type channels), and by caffeine, serotonin or ET-1 in Ca2+-free buffer (which reflect Ca2+ release from internal stores) were significantly increased in aortas from male and female DOCA-salt compared to control aortas. DOCA-salt treatment of male, but not female, rats statistically increased vascular mRNA expression of ET-1 and ET B receptors, but decreased the expression of ET A receptors. Molecular up-regulation of vascular ET B receptors, rather than differential changes in smooth muscle Ca2+ handling mechanisms, seems to account for the increased vascular reactivity to ET-1/ET B receptor agonists and higher blood pressure levels observed in male DOCA-salt rats.


Subject(s)
Calcium/metabolism , Endothelin-1/genetics , Hypertension/metabolism , Receptors, Endothelin/metabolism , Sex Characteristics , Vasoconstriction , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Animals , Caffeine/pharmacology , Calcium Channel Agonists/pharmacology , Desoxycorticosterone , Female , Hypertension/chemically induced , Hypertension/physiopathology , Male , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptor, Endothelin A , Receptor, Endothelin B , Receptors, Endothelin/genetics , Reverse Transcriptase Polymerase Chain Reaction
4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;35(9): 1061-1068, Sept. 2002. ilus, graf
Article in English | LILACS | ID: lil-325901

ABSTRACT

We determined if the increased vascular responsiveness to endothelin-1 (ET-1) observed in male, but not in female, DOCA-salt rats is associated with differential vascular mRNA expression of ET-1 and/or ET A/ET B receptors or with functional differences in Ca2+ handling mechanisms by vascular myocytes. Uninephrectomized male and female Wistar rats received DOCA and drinking water containing NaCl/KCl. Control rats received vehicle and tap water. Blood pressure and contractile responses of endothelium-denuded aortic rings to agents which induce Ca2+ influx and/or its release from internal stores were measured using standard procedures. Expression of mRNA for ET-1 and ET A/ET B receptors was evaluated by RT-PCR after isolation of total cell RNA from both aorta and mesenteric arteries. Systolic blood pressure was higher in male than in female DOCA rats. Contractions induced by Bay K8644 (which activates Ca2+ influx through voltage-operated L-type channels), and by caffeine, serotonin or ET-1 in Ca2+-free buffer (which reflect Ca2+ release from internal stores) were significantly increased in aortas from male and female DOCA-salt compared to control aortas. DOCA-salt treatment of male, but not female, rats statistically increased vascular mRNA expression of ET-1 and ET B receptors, but decreased the expression of ET A receptors. Molecular up-regulation of vascular ET B receptors, rather than differential changes in smooth muscle Ca2+ handling mechanisms, seems to account for the increased vascular reactivity to ET-1/ET B receptor agonists and higher blood pressure levels observed in male DOCA-salt rats


Subject(s)
Animals , Male , Female , Rats , Desoxycorticosterone , Endothelin-1 , Hypertension , Receptors, Endothelin , Sodium Chloride , Vasoconstriction , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL