Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gerontol Geriatr Med ; 10: 23337214241237119, 2024.
Article in English | MEDLINE | ID: mdl-38487275

ABSTRACT

Grab bars facilitate bathing and reduce the risk of falls during bathing. Suction cup handholds and rim-mounted tub rails are an alternative to grab bars. The objective of this study was to determine whether older adults could install handholds and tub rails effectively to support bathing transfers. Participants installed rim-mounted tub rails and suction cup handholds in a simulated bathroom environment. Installation location and mechanical loading performance were evaluated. Participant perceptions during device installation and a bathing transfer were characterized. While 85% of suction cup handholds met loading requirements, more than half of participants installed the suction cup handhold in an unexpected location based on existing guidance documents. No rim-mounted tub rails were successfully installed. Participants were confident that the devices had been installed effectively. Suction cup handholds and rim mounted tub rails are easy to install, but clients may need additional guidance regarding where, and how to install them.

2.
Gait Posture ; 109: 153-157, 2024 03.
Article in English | MEDLINE | ID: mdl-38309126

ABSTRACT

BACKGROUND: Exploring the use of minimum marker sets is important for balancing the technical quality of motion capture with challenging data collection environments and protocols. While minimum marker sets have been demonstrated to be appropriate for evaluation of some motion patterns, there is limited evidence to support model choices for abrupt, asymmetrical, non-cyclic motion such as balance disturbance during a bathtub exit task. RESEARCH QUESTION: How effective are six models of reduced complexity for the estimation of centre of mass (COM) displacement and velocity, relative to a full-body model. METHODS: Eight participants completed a bathtub exit task. Participants received a balance perturbation as they crossed the bathtub rim, stepping from a soapy wet bathtub to a dry floor. Six reduced models were developed from the full, 72-marker, 12 segment 3D kinematic data set. Peak displacement and velocity of the body COM, and RMSE (relative to the full-body model) for displacement and velocity of the body COM were determined for each model. RESULTS: Main effects were observed for peak right, left, anterior, posterior, upwards and downwards motion, and peak left, anterior, posterior, upwards and downwards velocity. Time-varying (RMSE) was smaller for models including the thighs than models not containing the thighs. In contrast, inclusion of upper arm, forearm, and hand segments did not improve model performance. The model containing the sacrum marker only consistently performed the worst across peak and RMSE metrics. SIGNIFICANCE: Findings suggest a simplified centre of mass model may adequately capture abrupt, asymmetrical, non-cyclic tasks, such as balance disturbance recovery during obstacle crossing. A reduced kinematic model should include the thighs, trunk and pelvis segments, although models that are more complex are recommended, depending on the metrics of interest.


Subject(s)
Arm , Pelvis , Humans , Motion , Upper Extremity , Hand , Biomechanical Phenomena , Postural Balance
3.
Hum Factors ; 65(8): 1821-1829, 2023 Dec.
Article in English | MEDLINE | ID: mdl-34963373

ABSTRACT

OBJECTIVE: This study evaluated the hazard (risk of unrecovered balance loss and hazardous fall) and strategies associated with grab bar use, compared to no grab bar use, during unexpected balance loss initiated whilst exiting a bathtub. BACKGROUND: While independent bathing is critical for maintaining self-sufficiency, injurious falls during bathing transfer tasks are common. Grab bars are recommended to support bathing tasks, but no evidence exists regarding fall prevention efficacy. METHOD: Sixty-three adults completed a hazardous bathtub transfer task, experiencing an unpredictable external balance perturbation while stepping from a slippery bathtub to a dry surface. Thirty-two were provided a grab bar, while 31 had no grab bar available. Slips and grab bar use were recorded via four video cameras. Slip occurrence and strategy were identified by two independent video coders. RESULTS: Participants who had a grab bar were 75.8% more likely to recover their balance during the task than those who did not have a grab bar. Successful grab bar grasp was associated with balance recovery in all cases. Attempts to stabilize using other environmental elements, or using internal strategies only, were less successful balance recovery strategies. Grab bar presence appeared to cue use of the environment for stability. Proactive grasp and other strategies modified grasping success. CONCLUSION: Grab bars appear to provide effective support for recovery from unexpected balance loss. Grab bar presence may instigate development of fall prevention strategies prior to loss of balance. APPLICATION: Bathroom designs with grab bars may reduce frequency of fall-related injuries during bathing transfer tasks.


Subject(s)
Self-Help Devices , Adult , Humans , Baths
4.
Arch Phys Med Rehabil ; 102(10): 1902-1909, 2021 10.
Article in English | MEDLINE | ID: mdl-34237307

ABSTRACT

OBJECTIVES: To quantify mobility scooter performance when traversing snow, ice, and concrete in cold temperatures and to explore possible performance improvements with scooter winter tires. DESIGN: Cross-sectional. SETTING: Hospital-based research institute. PARTICIPANTS: Two drivers (50 and 100 kg) tested 8 scooter models (N=8). Two mobility scooters were used for winter tire testing. INTERVENTIONS: Scooters were tested on 3 different conditions in a random sequence (concrete, 2.5-cm depth snow, bare ice). Ramp ascent and descent, as well as right-angle cornering up to a maximum of 10° slopes on winter conditions, were observed. Winter tire testing used the same slopes with 2 scooters on bare and melting ice surfaces. MAIN OUTCOME MEASURES: Maximum achievable angle (MAA) and tire traction loss for ramp ascent and descent performance. The ability to steer around a corner on the ramp. RESULTS: All scooters underperformed in winter conditions, specifically when traversing snow- and ice-covered slopes (χ2 [2, N=8]=13.87-15.55, P<.001) and corners (χ2 [2, N=8]=12.25, P<.01). Half of the scooters we tested were unable to climb a 1:12 grade (4.8°) snow-covered slope without losing traction. All but 1 failed to ascend an ice-covered 1:12 grade (4.8°) slope. Performance was even more unsatisfactory for the forward downslopes on both snow and ice. Winter tires enhanced the MAA, permitting 1:12 (4.8°) slope ascent on ice. CONCLUSIONS: Mobility scooters need to be designed with winter months in mind. Our findings showed that Americans with Disabilities Act-compliant built environments, such as curb ramps that conform to a 1:12 (4.8°) slope, become treacherous or impassible to mobility scooter users when covered in ice or snow. Scooter manufacturers should consider providing winter tires as optional accessories in regions that experience ice and snow accumulation. Additional testing/standards need to be established to evaluate winter mobility scooter performance further.


Subject(s)
Architectural Accessibility , Disabled Persons/rehabilitation , Equipment Design , Ice , Snow , Wheelchairs , Cross-Sectional Studies , Electric Power Supplies , Humans , Quality of Life
5.
Med Sci Sports Exerc ; 47(1): 66-73, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24870570

ABSTRACT

PURPOSE: This study aimed to determine the effect of cooling progressively greater portions of the lower extremities on dynamic balance and neuromuscular activation. METHODS: Ten healthy males (22.8 ± 3.4 yr, 76.5 ± 9.1 kg) performed one room air temperature control (22.4°C ± 0.8°C) and three trials of cold water immersion at 12°C (lateral malleolus, ankle; lateral femoral epicondyle, knee; anterior superior iliac spine, hip) for 10 min before performing a unipedal balance test (Star Excursion Balance Test (SEBT)) with their dominant limb. Muscle activation of the vastus lateralis, biceps femoris, tibialis anterior, and lateral gastrocnemius was measured with surface EMG during the SEBT. RESULTS: Core temperature remained euthermic throughout all trials. Gastrocnemius temperature decreased from control (30.4°C ± 0.5°C) with knee (23.7°C ± 1.7°C) and hip immersion (22.4°C ± 1.0°C), whereas vastus lateralis temperature decreased from control (33.7°C ± 1.7°C) with hip immersion (27.3°C ± 2.0°C) (P < 0.01 for all comparisons). Cold water immersion influenced mean anterior and posterior reach distance on the SEBT in a dose-dependent fashion. Compared with those in control, mean anterior and posterior SEBT reach distances were not decreased with ankle (-1.38% and -0.74%, respectively) and knee immersion (-2.48% and -2.74%), whereas hip immersion significantly reduced SEBT by 4.73% and 4.05% (P < 0.05, d = 0.52-0.58). Muscle activation was largely unaffected as the lower extremities were cooled, with only the lateral gastrocnemius during the anterior SEBT approaching a decrease (P = 0.059). CONCLUSIONS: Cooling larger portions of the lower extremities progressively affect dynamic balance, and thermal protection strategies should focus on maintaining temperature in the large muscle mass of the thigh.


Subject(s)
Cold Temperature/adverse effects , Hypothermia, Induced/adverse effects , Lower Extremity/physiopathology , Muscle, Skeletal/physiopathology , Postural Balance/physiology , Adult , Electromyography , Humans , Immersion , Male , Skin Temperature , Water , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...