Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Nat Commun ; 15(1): 3352, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688933

ABSTRACT

Highlanders and lowlanders of Papua New Guinea have faced distinct environmental stress, such as hypoxia and environment-specific pathogen exposure, respectively. In this study, we explored the top genomics regions and the candidate driver SNPs for selection in these two populations using newly sequenced whole-genomes of 54 highlanders and 74 lowlanders. We identified two candidate SNPs under selection - one in highlanders, associated with red blood cell traits and another in lowlanders, which is associated with white blood cell count - both potentially influencing the heart rate of Papua New Guineans in opposite directions. We also observed four candidate driver SNPs that exhibit linkage disequilibrium with an introgressed haplotype, highlighting the need to explore the possibility of adaptive introgression within these populations. This study reveals that the signatures of positive selection in highlanders and lowlanders of Papua New Guinea align closely with the challenges they face, which are specific to their environments.


Subject(s)
Altitude , Haplotypes , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Selection, Genetic , Papua New Guinea , Humans , Genome, Human , Genetics, Population
2.
Curr Biol ; 33(24): 5495-5504.e4, 2023 12 18.
Article in English | MEDLINE | ID: mdl-37995693

ABSTRACT

The population history of the Sahara/Sahelian belt is understudied, despite previous work highlighting complex dynamics.1,2,3,4,5,6,7 The Sahelian Fulani, i.e., the largest nomadic pastoral population in the world,8 represent an interesting case because they show a non-negligible proportion of an Eurasian genetic component, usually explained by recent admixture with northern Africans.1,2,5,6,7,9,10,11,12 Nevertheless, their origins are largely unknown, although several hypotheses have been proposed, including a possible link to ancient peoples settled in the Sahara during its last humid phase (Green Sahara, 12,000-5,000 years before present [BP]).13,14,15 To shed light about the Fulani ancient genetic roots, we produced 23 high-coverage (30×) whole genomes from Fulani individuals from 8 Sahelian countries, plus 17 samples from other African groups and 3 from Europeans as controls, for a total of 43 new whole genomes. These data have been compared with 814 published modern whole genomes2,16,17,18 and with relevant published ancient sequences (> 1,800 samples).19 These analyses showed some evidence that the non-sub-Saharan genetic ancestry component of the Fulani might have also been shaped by older events,1,5,6 possibly tracing the Fulani origins to unsampled ancient Green Saharan population(s). The joint analysis of modern and ancient samples allowed us to shed light on the genetic ancestry composition of such ancient Saharans, suggesting a similarity with Late Neolithic Moroccans and possibly pointing to a link with the spread of cattle herding. We also identified two different Fulani clusters whose admixture pattern may be informative about the historical Fulani movements and their later involvement in the western African empires.


Subject(s)
Black People , Genetics, Population , Genomics , Humans , Africa, Northern , Black People/genetics
3.
Am J Hum Genet ; 110(5): 880-894, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37105174

ABSTRACT

Using contemporary people as proxies for ancient communities is a contentious but necessary practice in anthropology. In southern Africa, the distinction between the Cape KhoeSan and eastern KhoeSan remains unclear, as ethnicity labels have been changed through time and most communities were decimated if not extirpated. The eastern KhoeSan may have had genetic distinctions from neighboring communities who speak Bantu languages and KhoeSan further away; alternatively, the identity may not have been tied to any notion of biology, instead denoting communities with a nomadic "lifeway" distinct from African agro-pastoralism. The Baphuthi of the 1800s in the Maloti-Drakensberg, southern Africa had a substantial KhoeSan constituency and a lifeway of nomadism, cattle raiding, and horticulture. Baphuthi heritage could provide insights into the history of the eastern KhoeSan. We examine genetic affinities of 23 Baphuthi to discern whether the narrative of KhoeSan descent reflects distinct genetic ancestry. Genome-wide SNP data (Illumina GSA) were merged with 52 global populations, for 160,000 SNPs. Genetic analyses show no support for a unique eastern KhoeSan ancestry distinct from other KhoeSan or southern Bantu speakers. The Baphuthi have strong affinities with early-arriving southern Bantu-speaking (Nguni) communities, as the later-arriving non-Nguni show strong evidence of recent African admixture possibly related to late-Iron Age migrations. The references to communities as "San" and "Bushman" in historic literature has often been misconstrued as notions of ethnic/biological distinctions. The terms may have reflected ambiguous references to non-sedentary polities instead, as seems to be the case for the eastern "Bushman" heritage of the Baphuthi.


Subject(s)
Genetic Variation , Genetics, Population , Humans , Africa, Southern , Black People/genetics , Ethnicity/genetics
4.
Curr Biol ; 33(8): 1573-1581.e5, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36931272

ABSTRACT

Despite its crucial location, the western side of Amazonia between the Andes and the source(s) of the Amazon River is still understudied from a genomic and archaeogenomic point of view, albeit possibly harboring essential information to clarify the complex genetic history of local Indigenous groups and their interactions with nearby regions,1,2,3,4,5,6,7,8 including central America and the Caribbean.9,10,11,12 Focusing on this key region, we analyzed the genome-wide profiles of 51 Ashaninka individuals from Amazonian Peru, observing an unexpected extent of genomic variation. We identified at least two Ashaninka subgroups with distinctive genomic makeups, which were differentially shaped by the degree and timing of external admixtures, especially with the Indigenous groups from the Andes and the Pacific coast. On a continental scale, Ashaninka ancestors probably derived from a south-north migration of Indigenous groups moving into the Amazonian rainforest from a southeastern area with contributions from the Southern Cone and the Atlantic coast. These ancestral populations diversified in the variegated geographic regions of interior South America, on the eastern side of the Andes, differentially interacting with surrounding coastal groups. In this complex scenario, we also revealed strict connections between the ancestors of present-day Ashaninka, who belong to the Arawakan language family,13 and those Indigenous groups that moved further north into the Caribbean, contributing to the early Ceramic (Saladoid) tradition in the islands.14,15.


Subject(s)
Ethnicity , Genetics, Population , Humans , Peru , South America , Ethnicity/genetics , Genomics
5.
Elife ; 122023 02 10.
Article in English | MEDLINE | ID: mdl-36763080

ABSTRACT

Individuals infected with the SARS-CoV-2 virus present with a wide variety of symptoms ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed a genetic haplotype on chromosome 3 that entered the human population via introgression from Neanderthals as the strongest genetic risk factor for the severe response to COVID-19. However, the specific variants along this introgressed haplotype that contribute to this risk and the biological mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplotype for their likelihood of driving the genetic predisposition to severe COVID-19 outcomes. We do this by first exploring their impact on the regulation of genes involved in COVID-19 infection using a variety of population genetics and functional genomics tools. We then perform a locus-specific massively parallel reporter assay to individually assess the regulatory potential of each allele on the haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked genetic variants to identify four introgressed alleles that are strong functional candidates for driving the association between this locus and severe COVID-19. Using reporter assays in the presence/absence of SARS-CoV-2, we find evidence that these variants respond to viral infection. These variants likely drive the locus' impact on severity by modulating the regulation of two critical chemokine receptor genes: CCR1 and CCR5. These alleles are ideal targets for future functional investigations into the interaction between host genomics and COVID-19 outcomes.


Subject(s)
COVID-19 , Neanderthals , Virus Diseases , Humans , Animals , COVID-19/genetics , Neanderthals/genetics , SARS-CoV-2/genetics , Genetics, Population
6.
J Anthropol Sci ; 100: 267-294, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36511799

ABSTRACT

Since prehistoric times, Italy has represented a bridge between peoples, genes and cultures. Its peculiar geographical position explains why: it is located in the center of the Mediterranean Sea, flanked by the Balkans and the Hellenic Peninsula to the east, Iberia to the west and surrounded by North Africa to the south and central Europe to the north. This makes Italy of extraordinary interest for the study of some different aspects of human diversity. Here we overview current knowledge regarding the relationships between the structure of the genetic variation of Italian populations and the geographical, ecological and cultural factors that have characterized their evolutionary history. Human presence in Italian territory is deeply rooted in the past. Lithic artifacts produced by the genus Homo and remains of Homo sapiens are among the earliest to have been found on the continent, as shown by the lithic industry of Pirro Nord (between 1.3 and 1.6 Mya) and the dental remains of the "Grotta del Cavallo" (between 45 and 43 Kya). Genetic and genomic studies relating to existing and extinct human groups have shed light on the migrations from Europe, Africa and Asia that created the ancient layers of the genetic structure of today's Italian populations, especially before the Iron Age. The important role of isolation (genetic and cultural) in shaping genetic structure is clearly visible in the patterns of intra- and inter-population diversity observed among Italian ethno-linguistic minorities that settled on the peninsula and on the major islands until the 19th century. Finally, selective pressures have likely driven the distribution of originally adaptive variants and haplotypes that now confer protection or susceptibility to major diseases such as diabetes and cardiovascular disease (in northern Italy) and tuberculosis and leprosy (in the south). What emerges is a picture where the combined effects of migration, isolation and natural selection generated by the interplay of geography, environment and culture have shaped a complex pattern of human diversity that is unique in Europe and which goes hand in hand with today's rich animal and plant biodiversity. In a nutshell, scientific evidence and cultural heritage paint Italy as a place with extremely diverse environments where distant peoples have met since the deep past, bringing and sharing genes and ideas.


Subject(s)
Beauty , Biological Evolution , Animals , Humans , Italy , Haplotypes , Balkan Peninsula , Genetics, Population , Genetic Variation/genetics
7.
Genome Res ; 32(10): 1941-1951, 2022 10.
Article in English | MEDLINE | ID: mdl-36180231

ABSTRACT

Gibbons are the most speciose family of living apes, characterized by a diverse chromosome number and rapid rate of large-scale rearrangements. Here we performed single-cell template strand sequencing (Strand-seq), molecular cytogenetics, and deep in silico analysis of a southern white-cheeked gibbon genome, providing the first comprehensive map of 238 previously hidden small-scale inversions. We determined that more than half are gibbon specific, at least fivefold higher than shown for other primate lineage-specific inversions, with a significantly high number of small heterozygous inversions, suggesting that accelerated evolution of inversions may have played a role in the high sympatric diversity of gibbons. Although the precise mechanisms underlying these inversions are not yet understood, it is clear that segmental duplication-mediated NAHR only accounts for a small fraction of events. Several genomic features, including gene density and repeat (e.g., LINE-1) content, might render these regions more break-prone and susceptible to inversion formation. In the attempt to characterize interspecific variation between southern and northern white-cheeked gibbons, we identify several large assembly errors in the current GGSC Nleu3.0/nomLeu3 reference genome comprising more than 49 megabases of DNA. Finally, we provide a list of 182 candidate genes potentially involved in gibbon diversification and speciation.


Subject(s)
Hominidae , Hylobates , Animals , Hylobates/genetics , Genome , Primates/genetics , Chromosome Inversion/genetics , Chromosomes , Hominidae/genetics
8.
Genomics ; 114(4): 110405, 2022 07.
Article in English | MEDLINE | ID: mdl-35709925

ABSTRACT

Southern Italy was characterised by a complex prehistory that started with different Palaeolithic cultures, later followed by the Neolithization and the demic dispersal from the Pontic-Caspian Steppe during the Bronze Age. Archaeological and historical evidences point to a link between Southern Italians and the Balkans still present in modern times. To shed light on these dynamics, we analysed around 700 South Mediterranean genomes combined with informative ancient DNAs. Our findings revealed high affinities of South-Eastern Italians with modern Eastern Peloponnesians, and a closer affinity of ancient Greek genomes with those from specific regions of South Italy than modern Greek genomes. The higher similarity could be associated with a Bronze Age component ultimately originating from the Caucasus with high Iranian and Anatolian Neolithic ancestries. Furthermore, extremely differentiated allele frequencies among Northern and Southern Italy revealed putatively adapted SNPs in genes involved in alcohol metabolism, nevi features and immunological traits.


Subject(s)
DNA, Ancient , Genome, Human , Archaeology , Humans , Iran , Italy
9.
Curr Biol ; 32(6): 1412-1419.e3, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35139357

ABSTRACT

The contemporary European genetic makeup formed in the last 8,000 years when local Western Hunter-Gatherers (WHGs) mixed with incoming Anatolian Neolithic farmers and Pontic Steppe pastoralists.1-3 This encounter combined genetic variants with distinct evolutionary histories and, together with new environmental challenges faced by the post-Neolithic Europeans, unlocked novel adaptations.4 Previous studies inferred phenotypes in these source populations, using either a few single loci5-7 or polygenic scores based on genome-wide association studies,8-10 and investigated the strength and timing of natural selection on lactase persistence or height, among others.6,11,12 However, how ancient populations contributed to present-day phenotypic variation is poorly understood. Here, we investigate how the unique tiling of genetic variants inherited from different ancestral components drives the complex traits landscape of contemporary Europeans and quantify selection patterns associated with these components. Using matching individual-level genotype and phenotype data for 27 traits in the Estonian biobank13 and genotype data directly from the ancient source populations, we quantify the contributions from each ancestry to present-day phenotypic variation in each complex trait. We find substantial differences in ancestry for eye and hair color, body mass index, waist/hip circumferences, and their ratio, height, cholesterol levels, caffeine intake, heart rate, and age at menarche. Furthermore, we find evidence for recent positive selection linked to four of these traits and, in addition, sleep patterns and blood pressure. Our results show that these ancient components were differentiated enough to contribute ancestry-specific signatures to the complex trait variability displayed by contemporary Europeans.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Female , Genome, Human , Genomics , Human Migration , Humans
10.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35038748

ABSTRACT

The geographical location and shape of Apulia, a narrow land stretching out in the sea at the South of Italy, made this region a Mediterranean crossroads connecting Western Europe and the Balkans. Such movements culminated at the beginning of the Iron Age with the Iapygian civilization which consisted of three cultures: Peucetians, Messapians, and Daunians. Among them, the Daunians left a peculiar cultural heritage, with one-of-a-kind stelae and pottery, but, despite the extensive archaeological literature, their origin has been lost to time. In order to shed light on this and to provide a genetic picture of Iron Age Southern Italy, we collected and sequenced human remains from three archaeological sites geographically located in Northern Apulia (the area historically inhabited by Daunians) and radiocarbon dated between 1157 and 275 calBCE. We find that Iron Age Apulian samples are still distant from the genetic variability of modern-day Apulians, they show a degree of genetic heterogeneity comparable with the cosmopolitan Republican and Imperial Roman civilization, even though a few kilometers and centuries separate them, and they are well inserted into the Iron Age Pan-Mediterranean genetic landscape. Our study provides for the first time a window on the genetic make-up of pre-Roman Apulia, whose increasing connectivity within the Mediterranean landscape, would have contributed to laying the foundation for modern genetic variability. In this light, the genetic profile of Daunians may be compatible with an at least partial autochthonous origin, with plausible contributions from the Balkan peninsula.


Subject(s)
DNA, Mitochondrial , DNA, Mitochondrial/genetics , Europe , Italy
11.
Eur J Hum Genet ; 30(3): 307-319, 2022 03.
Article in English | MEDLINE | ID: mdl-33753911

ABSTRACT

Recent studies have showed the diverse genetic architecture of the highly consanguineous populations inhabiting the Arabian Peninsula. Consanguinity coupled with heterogeneity is complex and makes it difficult to understand the bases of population-specific genetic diseases in the region. Therefore, comprehensive genetic characterization of the populations at the finest scale is warranted. Here, we revisit the genetic structure of the Kuwait population by analyzing genome-wide single nucleotide polymorphisms data from 583 Kuwaiti individuals sorted into three subgroups. We envisage a diverse demographic genetic history among the three subgroups based on drift and allelic sharing with modern and ancient individuals. Furthermore, our comprehensive haplotype-based analyses disclose a high genetic heterogeneity among the Kuwaiti populations. We infer the major sources of ancestry within the newly defined groups; one with an obvious predominance of sub-Saharan/Western Africa mostly comprising Kuwait-B individuals, and other with West Eurasia including Kuwait-P and Kuwait-S individuals. Overall, our results recapitulate the historical population movements and reaffirm the genetic imprints of the legacy of continental trading in the region. Such deciphering of fine-scale population structure and their regional genetic heterogeneity would provide clues to the uncharted areas of disease-gene discovery and related associations in populations inhabiting the Arabian Peninsula.


Subject(s)
Genetic Heterogeneity , Polymorphism, Single Nucleotide , Consanguinity , Genetic Variation , Genetics, Population , Haplotypes , Humans , Kuwait
12.
Biomedicines ; 9(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34944615

ABSTRACT

Drug addiction, or substance use disorder (SUD), is a chronic, relapsing disorder in which compulsive drug-seeking and drug-taking behaviour persist despite serious negative consequences. Drug abuse represents a problem that deserves great attention from a social point of view, and focuses on the importance of genetic studies to help in understanding the genetic basis of addiction and its medical treatment. Despite the complexity of drug addiction disorders, and the high number of environmental variables playing a role in the onset, recurrence, and duration of the symptoms, several studies have highlighted the non-negligible role of genetics, as demonstrated by heritability and genome-wide association studies. A correlation between the relative risk of addiction to specific substances and heritability has been recently observed, suggesting that neurobiological mechanisms may be, at least in part, inherited. All these observations point towards a scenario where the core neurobiological factors of addiction, involving the reward system, impulsivity, compulsivity, stress, and anxiety response, are transmitted, and therefore, genes and mutations underlying their variation might be detected. In the last few years, the development of new and more efficient sequencing technologies has paved the way for large-scale studies in searching for genetic and epigenetic factors affecting drug addiction disorders and their treatments. These studies have been crucial to pinpoint single nucleotide polymorphisms (SNPs) in genes that affect the reaction to medical treatments. This is critically important to identify pharmacogenomic approaches for substance use disorder, such as OPRM1 SNPs and methadone required doses for maintenance treatment (MMT). Nevertheless, despite the promising results obtained by genome-wide association and pharmacogenomic studies, specific studies related to population genetics diversity are lacking, undermining the overall applicability of the preliminary findings, and thus potentially affecting the portability and the accuracy of the genetic studies. In this review, focusing on cannabis, cocaine and heroin use, we report the state-of-the-art genomics and pharmacogenomics of SUDs, and the possible future perspectives related to medical treatment response in people that ask for assistance in solving drug-related problems.

13.
J Anthropol Sci ; 99: 159-161, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34609334
14.
Genes (Basel) ; 12(10)2021 10 07.
Article in English | MEDLINE | ID: mdl-34680976

ABSTRACT

A general imbalance in the proportion of disembarked males and females in the Americas has been documented during the Trans-Atlantic Slave Trade and the Colonial Era and, although less prominent, more recently. This imbalance may have left a signature on the genomes of modern-day populations characterised by high levels of admixture. The analysis of the uniparental systems and the evaluation of continental proportion ratio of autosomal and X chromosomes revealed a general sex imbalance towards males for European and females for African and Indigenous American ancestries. However, the consistency and degree of this imbalance are variable, suggesting that other factors, such as cultural and social practices, may have played a role in shaping it. Moreover, very few investigations have evaluated the sex imbalance using haplotype data, containing more critical information than genotypes. Here, we analysed genome-wide data for more than 5000 admixed American individuals to assess the presence, direction and magnitude of sex-biased admixture in the Americas. For this purpose, we applied two haplotype-based approaches, ELAI and NNLS, and we compared them with a genotype-based method, ADMIXTURE. In doing so, besides a general agreement between methods, we unravelled that the post-colonial admixture dynamics show higher complexity than previously described.


Subject(s)
Genetics, Population , Haplotypes/genetics , Human Migration , Black or African American/genetics , Americas , Chromosomes, Human, X/genetics , Female , Genotype , Humans , Male , Maternal Inheritance/genetics , Paternal Inheritance/genetics , White People/genetics
15.
Am J Hum Genet ; 108(11): 2037-2051, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34626535

ABSTRACT

Anatomically modern humans evolved around 300 thousand years ago in Africa. They started to appear in the fossil record outside of Africa as early as 100 thousand years ago, although other hominins existed throughout Eurasia much earlier. Recently, several studies argued in favor of a single out of Africa event for modern humans on the basis of whole-genome sequence analyses. However, the single out of Africa model is in contrast with some of the findings from fossil records, which support two out of Africa events, and uniparental data, which propose a back to Africa movement. Here, we used a deep-learning approach coupled with approximate Bayesian computation and sequential Monte Carlo to revisit these hypotheses from the whole-genome sequence perspective. Our results support the back to Africa model over other alternatives. We estimated that there are two sequential separations between Africa and out of African populations happening around 60-90 thousand years ago and separated by 13-15 thousand years. One of the populations resulting from the more recent split has replaced the older West African population to a large extent, while the other one has founded the out of Africa populations.


Subject(s)
Deep Learning , Evolution, Molecular , Africa , Algorithms , Bayes Theorem , Fossils , Genetic Variation , Humans , Monte Carlo Method , Whole Genome Sequencing/methods
16.
Genome Biol Evol ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-34480555

ABSTRACT

The Arabian Peninsula is strategic for investigations centered on the early structuring of modern humans in the wake of the out-of-Africa migration. Despite its poor climatic conditions for the recovery of ancient human DNA evidence, the availability of both genomic data from neighboring ancient specimens and informative statistical tools allow modeling the ancestry of local modern populations. We applied this approach to a data set of 741,000 variants screened in 291 Arabians and 78 Iranians, and obtained insightful evidence. The west-east axis was a strong forcer of population structure in the Peninsula, and, more importantly, there were clear continuums throughout time linking western Arabia with the Levant, and eastern Arabia with Iran and the Caucasus. Eastern Arabians also displayed the highest levels of the basal Eurasian lineage of all tested modern-day populations, a signal that was maintained even after correcting for a possible bias due to a recent sub-Saharan African input in their genomes. Not surprisingly, eastern Arabians were also the ones with highest similarity with Iberomaurusians, who were, so far, the best proxy for the basal Eurasians amongst the known ancient specimens. The basal Eurasian lineage is the signature of ancient non-Africans who diverged from the common European-eastern Asian pool before 50,000 years ago, prior to the later interbred with Neanderthals. Our results appear to indicate that the exposed basin of the Arabo-Persian Gulf was the possible home of basal Eurasians, a scenario to be further investigated by searching ancient Arabian human specimens.


Subject(s)
Neanderthals , Animals , DNA, Ancient , Genetics, Population , Genome, Human , Human Migration , Humans , Indian Ocean , Iran , Neanderthals/genetics
17.
Hum Genet ; 140(10): 1417-1431, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34410492

ABSTRACT

The Italian Peninsula, a natural pier across the Mediterranean Sea, witnessed intricate population events since the very beginning of the human occupation in Europe. In the last few years, an increasing number of modern and ancient genomes from the area have been published by the international research community. This genomic perspective started unveiling the relevance of Italy to understand the post-Last Glacial Maximum (LGM) re-peopling of Europe, the earlier phase of the Neolithic westward migrations, and its linking role between Eastern and Western Mediterranean areas after the Iron Age. However, many open questions are still waiting for more data to be addressed in full. With this review, we summarize the current knowledge emerging from the available ancient Italian individuals and, by re-analysing them all at once, we try to shed light on the avenues future research in the area should cover. In particular, open questions concern (1) the fate of pre-Villabruna Europeans and to what extent their genomic components were absorbed by the post-LGM hunter-gatherers; (2) the role of Sicily and Sardinia before LGM; (3) to what degree the documented genetic structure within the Early Neolithic settlers can be described as two separate migrations; (4) what are the population events behind the marked presence of an Iranian Neolithic-like component in Bronze Age and Iron Age Italian and Southern European samples.


Subject(s)
DNA, Ancient/analysis , Evolution, Molecular , Genetic Variation , Genome, Human , Genomics/history , White People/genetics , White People/history , History, Ancient , History, Medieval , Humans , Italy
18.
Am J Med Genet A ; 185(11): 3390-3400, 2021 11.
Article in English | MEDLINE | ID: mdl-34435747

ABSTRACT

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genodermatosis caused by mutations in the gene coding for type VII collagen (COL7A1). More than 800 different pathogenic mutations in COL7A1 have been described to date; however, the ancestral origins of many of these mutations have not been precisely identified. In this study, 32 RDEB patient samples from the Southwestern United States, Mexico, Chile, and Colombia carrying common mutations in the COL7A1 gene were investigated to determine the origins of these mutations and the extent to which shared ancestry contributes to disease prevalence. The results demonstrate both shared European and American origins of RDEB mutations in distinct populations in the Americas and suggest the influence of Sephardic ancestry in at least some RDEB mutations of European origins. Knowledge of ancestry and relatedness among RDEB patient populations will be crucial for the development of future clinical trials and the advancement of novel therapeutics.


Subject(s)
Collagen Type VII/genetics , Epidermolysis Bullosa Dystrophica/genetics , Hispanic or Latino/genetics , Jews/genetics , Chile/epidemiology , Colombia/epidemiology , Epidermolysis Bullosa Dystrophica/epidemiology , Female , Genes, Recessive/genetics , Humans , Male , Mexico/epidemiology , Phenotype , United States/epidemiology
20.
Hum Mol Genet ; 30(22): 2123-2134, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34196708

ABSTRACT

American populations are one of the most interesting examples of recently admixed groups, where ancestral components from three major continental human groups (Africans, Eurasians and Native Americans) have admixed within the last 15 generations. Recently, several genetic surveys focusing on thousands of individuals shed light on the geography, chronology and relevance of these events. However, even though gene flow could drive adaptive evolution, it is unclear whether and how natural selection acted on the resulting genetic variation in the Americas. In this study, we analysed the patterns of local ancestry of genomic fragments in genome-wide data for ~ 6000 admixed individuals from 10 American countries. In doing so, we identified regions characterized by a divergent ancestry profile (DAP), in which a significant over or under ancestral representation is evident. Our results highlighted a series of genomic regions with DAPs associated with immune system response and relevant medical traits, with the longest DAP region encompassing the human leukocyte antigen locus. Furthermore, we found that DAP regions are enriched in genes linked to cancer-related traits and autoimmune diseases. Then, analysing the biological impact of these regions, we showed that natural selection could have acted preferentially towards variants located in coding and non-coding transcripts and characterized by a high deleteriousness score. Taken together, our analyses suggest that shared patterns of post admixture adaptation occurred at a continental scale in the Americas, affecting more often functional and impactful genomic variants.


Subject(s)
Genetics, Population , Genome, Human , Genomics , Racial Groups/genetics , Selection, Genetic , Americas , Computer Simulation , Genomics/methods , Humans , Models, Genetic , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...