Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Antiviral Res ; 220: 105760, 2023 12.
Article in English | MEDLINE | ID: mdl-37992765

ABSTRACT

Unravelling the molecular mechanism of COVID-19 vaccines through transcriptomic pathways involved in the host response to SARS-CoV-2 infection is key to understand how vaccines work, and for the development of optimized COVID-19 vaccines that can prevent the emergence of SARS-CoV-2 variants of concern (VoCs) and future outbreaks. In this study, we investigated the effects of vaccination with a modified vaccinia virus Ankara (MVA)-based vector expressing the full-length SARS-CoV-2 spike protein (MVA-S) on the lung transcriptome from susceptible K18-hACE2 mice after SARS-CoV-2 infection. One dose of MVA-S regulated genes related to viral infection control, inflammation processes, T-cell response, cytokine production and IFN-γ signalling. Down-regulation of Rhcg and Tnfsf18 genes post-vaccination with one and two doses of MVA-S may represent a mechanism for controlling infection immunity and vaccine-induced protection. One dose of MVA-S provided partial protection with a distinct lung transcriptomic profile to healthy animals, while two doses of MVA-S fully protected against infection with a transcriptomic profile comparable to that of non-vaccinated healthy animals. This suggests that the MVA-S booster generates a robust and rapid antigen-specific immune response preventing virus infection. Notably, down-regulation of Atf3 and Zbtb16 genes in mice vaccinated with two doses of MVA-S may contribute to vaccine control of innate immune system and inflammation processes in the lungs during SARS-CoV-2 infection. This study shows host transcriptomic mechanisms likely involved in the MVA-S vaccine-mediated immune response against SARS-CoV-2 infection, which could help in improving vaccine dose assessment and developing novel, well-optimized SARS-CoV-2 vaccine candidates against prevalent or emerging VoCs.


Subject(s)
COVID-19 , Vaccines , Humans , Animals , Mice , Vaccinia virus/genetics , COVID-19 Vaccines/genetics , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2/genetics , Gene Expression Profiling , Immunity , Lung , Inflammation
3.
Front Aging Neurosci ; 15: 1063536, 2023.
Article in English | MEDLINE | ID: mdl-36819725

ABSTRACT

Introduction: The relationship between music and Alzheimer's disease (AD) has been approached by different disciplines, but most of our outstanding comes from neuroscience. Methods: First, we systematically reviewed the state-of-the-art of neuroscience and cognitive sciences research on music and AD (>100 studies), and the progress made on the therapeutic impact of music stimuli in memory. Next, we meta-analyzed transcriptomic and epigenomic data of AD patients to search for commonalities with genes and pathways previously connected to music in genome association, epigenetic, and gene expression studies. Results: Our findings indicate that >93% of the neuroscience/ cognitive sciences studies indicate at least one beneficial effect of music on patients with neurodegenerative diseases, being improvements on memory and cognition the most frequent outcomes; other common benefits were on social behavior, mood and emotion, anxiety and agitation, quality of life, and depression. Out of the 334 music-related genes, 127 (38%) were found to be linked to epigenome/transcriptome analysis in AD (vs. healthy controls); some of them (SNCA, SLC6A4, ASCC2, FTH1, PLAUR and ARHGAP26) have been reported to be associated e.g. with musical aptitude and music effect on the transcriptome. Other music-related genes (GMPR, SELENBP1 and ADIPOR1) associated to neuropsychiatric, neurodegenerative diseases and music performance, emerged as hub genes in consensus co-expression modules detected between AD and music estimulated transcriptomes. In addition, we found connections between music, AD and dopamine related genes, with SCNA being the most remarkable - a gene previously associated with learning and memory, and neurodegenerative disorders (e.g., Parkinson's disease and AD). Discussion: The present study indicate that the vast majority of neuroscientific studies unambiguously show that music has a beneficial effect on health, being the most common benefits relevant to Alzheimer's disease. These findings illuminate a new roadmap for genetic research in neurosciences, and musical interventions in AD and other neurodegenerative conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...