Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Appl Opt ; 63(13): 3557-3569, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38856541

ABSTRACT

The speckle noise generated during digital holographic interferometry (DHI) is unavoidable and difficult to eliminate, thus reducing its accuracy. We propose a self-supervised deep-learning speckle denoising method using a cycle-consistent generative adversarial network to mitigate the effect of speckle noise. The proposed method integrates a 4-f optical speckle noise simulation module with a parameter generator. In addition, it uses an unpaired dataset for training to overcome the difficulty in obtaining noise-free images and paired data from experiments. The proposed method was tested on both simulated and experimental data, with results showing a 6.9% performance improvement compared with a conventional method and a 2.6% performance improvement compared with unsupervised deep learning in terms of the peak signal-to-noise ratio. Thus, the proposed method exhibits superior denoising performance and potential for DHI, being particularly suitable for processing large datasets.

2.
Materials (Basel) ; 16(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37445077

ABSTRACT

Bells are made of bronze, an alloy of copper and tin. Art objects and musical instruments belong to tangible and intangible heritage. The effect of atmospheric alteration on their sound is not well documented. To address this question, alteration cycles of bronze specimens are performed in a chamber reproducing a realistic polluted coastal atmosphere. The corrosion layers are characterized by X-ray diffraction, electron microscopy and X-ray photoelectron spectrometry. The buried interface of the film (alloy-layer interface) is formed by a thin, adherent and micro-cracked layer, mainly composed of sulfates, copper oxide and chloride, on top of tin corrosion products. Near the atmosphere-film interface, less adherent irregular clusters of soot, calcite, gypsum and halite developed. Through these observations, an alteration scenario is proposed. To correlate the bronze corrosion effect on the bell sound, linear and nonlinear resonance experiments are performed on the corroded bronze specimens, where resonance parameters are monitored as a function of increasing driving force using a shaker. Results show that the corrosion effect on the acoustic properties can be monitored through the evolution of the acoustic nonlinear parameters (damping and resonance). These well-calibrated original experiments confirm the effect of corrosion on the acoustic properties of bronze.

3.
Sensors (Basel) ; 23(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37177588

ABSTRACT

Damage detection and localization based on ultrasonic guided waves revealed to be promising for structural health monitoring and nondestructive testing. However, the use of a piezoelectric sensor's network to locate and image damaged areas in composite structures requires a number of precautions including the consideration of anisotropy and baseline signals. The lack of information related to these two parameters drastically deteriorates the imaging performance of numerous signal processing methods. To avoid such deterioration, the present contribution proposes different methods to build baseline signals in different types of composites. Baseline signals are first constructed from a numerical simulation model using the previously determined elasticity tensor of the structure. Since the latter tensor is not always easy to obtain especially in the case of anisotropic materials, a second PZT network is used in order to obtain signals related to Lamb waves propagating in different directions. Waveforms are then translated according to a simplified theoretical propagation model of Lamb waves in homogeneous structures. The application of the different methods on transversely isotropic, unidirectional and quasi-transversely isotropic composites allows to have satisfactory images that well represent the damaged areas with the help of the delay-and-sum algorithm.

4.
Opt Express ; 30(12): 20666-20683, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224806

ABSTRACT

Speckle denoising can improve digital holographic interferometry phase measurements but may affect experimental accuracy. A deep-learning-based speckle denoising algorithm is developed using a conditional generative adversarial network. Two subnetworks, namely discriminator and generator networks, which refer to the U-Net and DenseNet layer structures are used to supervise network learning quality and denoising. Datasets obtained from speckle simulations are shown to provide improved noise feature extraction. The loss function is designed by considering the peak signal-to-noise ratio parameters to improve efficiency and accuracy. The proposed method thus shows better performance than other denoising algorithms for processing experimental strain data from digital holography.

5.
J Imaging ; 8(6)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35735964

ABSTRACT

Digital holography is well adapted to measure any modifications related to any objects. The method refers to digital holographic interferometry where the phase change between two states of the object is of interest. However, the phase images are corrupted by the speckle decorrelation noise. In this paper, we address the question of de-noising in holographic interferometry when phase data are polluted with speckle noise. We present a new database of phase fringe images for the evaluation of de-noising algorithms in digital holography. In this database, the simulated phase maps present characteristics such as the size of the speckle grains and the noise level of the fringes, which can be controlled by the generation process. Deep neural network architectures are trained with sets of phase maps having differentiated parameters according to the features. The performances of the new models are evaluated with a set of test fringe patterns whose characteristics are representative of severe conditions in terms of input SNR and speckle grain size. For this, four metrics are considered, which are the PSNR, the phase error, the perceived quality index and the peak-to-valley ratio. Results demonstrate that the models trained with phase maps with a diversity of noise characteristics lead to improving their efficiency, their robustness and their generality on phase maps with severe noise.

6.
Materials (Basel) ; 15(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35629513

ABSTRACT

Acoustic Emission (AE) is revealed to be highly adapted to monitor materials and structures in materials research and for site monitoring. AE-features can be either analyzed by means of physical considerations (geophysics/seismology) or through their time/frequency waveform characteristics. However, the multitude of definitions related to the different parameters as well as the processing methods makes it necessary to develop a comparative analysis in the case of a heterogeneous material such as civil engineering concrete. This paper aimed to study the micro-cracking behavior of steel fiber-reinforced reinforced concrete T-beams subjected to mechanical tests. For this purpose, four-points bending tests, carried out at different displacement velocities, were performed in the presence of an acoustic emission sensors network. Besides, a comparison between the sensitivity to damage of three definitions corresponding to the b-value parameter was performed and completed by the evolution of the RA-value and average frequency (AF) as a function of loading time. This work also discussed the use of the support-vector machine (SVM) approach to define different damage zones in the load-displacement curve. This work shows the limits of this approach and proposes the use of an unsupervised learning approach to cluster AE data according to physical and time/frequency parameters. The paper ends with a conclusion on the advantages and limitations of the different methods and parameters used in connection with the micro/macro tensile and shear mechanisms involved in concrete cracking for the purpose of in situ monitoring of concrete structures.

7.
J Opt Soc Am A Opt Image Sci Vis ; 39(2): A62-A78, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35200959

ABSTRACT

We present a review of deep learning algorithms dedicated to the processing of speckle noise in coherent imaging. We focus on methods that specifically process de-noising of input images. Four main classes of applications are described in this review: optical coherence tomography, synthetic aperture radar imaging, digital holography amplitude imaging, and fringe pattern analysis. We then present deep learning approaches recently developed in our group that rely on the retraining of residual convolutional neural network structures to process decorrelation phase noise. The paper ends with the presentation of a new approach that uses an iterative scheme controlled by an input SNR estimator associated with a phase-shifting procedure.

8.
Appl Opt ; 60(10): B81-B87, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33798139

ABSTRACT

Data acquisition and processing is a critical issue for high-speed applications, especially in three-dimensional live cell imaging and analysis. This paper focuses on sparse-data sample rotation tomographic reconstruction and analysis with several noise-reduction techniques. For the sample rotation experiments, a live Candida rugosa sample is used and controlled by holographic optical tweezers, and the transmitted complex wavefronts of the sample are recorded with digital holographic microscopy. Three different cases of sample rotation tomography were reconstructed for dense angle with a step rotation at every 2°, and for sparse angles with step rotation at every 5° and 10°. The three cases of tomographic reconstruction performance are analyzed with consideration for data processing using four noise-reduction techniques. The experimental results demonstrate potential capability in retaining the tomographic image quality, even at the sparse angle reconstructions, with the help of noise-reduction techniques.


Subject(s)
Holography/instrumentation , Holography/methods , Tomography/instrumentation , Tomography/methods , Deep Learning , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Optical Tweezers , Rotation , Saccharomycetales , Signal-To-Noise Ratio
9.
Sci Rep ; 11(1): 7026, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782466

ABSTRACT

The use of high-speed cameras permits to visualize, analyze or study physical phenomena at both their time and spatial scales. Mixing high-speed imaging with coherent imaging allows recording and retrieving the optical path difference and this opens the way for investigating a broad variety of scientific challenges in biology, medicine, material science, physics and mechanics. At high frame rate, simultaneously obtaining suitable performance and level of accuracy is not straightforward. In the field of mechanics, this prevents high-speed imaging to be applied to full-field vibrometry. In this paper, we demonstrate a coherent imaging approach that can yield full-field structural vibration measurements with state-of-the-art performances in case of high spatial and temporal density measurements points of holographic measurement. The method is based on high-speed on-line digital holography and recording a short time sequence. Validation of the proposed approach is carried out by comparison with a scanning laser Doppler vibrometer and by realistic simulations. Several error criteria demonstrate measurement capability of yielding amplitude and phase of structural deformations.

10.
Appl Opt ; 58(34): G187-G196, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31873502

ABSTRACT

The presence of speckle noise and dislocations makes phase restoration potentially difficult in quantitative phase imaging and metrology. Unfortunately, there is no appropriate approach to deal with phase data corrupted by high speckle noise and phase dislocations. Usually, processing schemes may deal with low-pass phase filtering, phase unwrapping, or phase inpainting. This paper discusses the efficient processing to deal with noisy phase maps corrupted with phase dislocations. Six processing schemes, combining four operations, are evaluated. The investigation is carried out by realistic numerical simulations in which strong decorrelation phase noise and phase dislocations are generated. As a result, most robust and faster processing is established. The applicability of the optimal scheme is demonstrated through deformation measurement in dental materials.

11.
J Acoust Soc Am ; 146(4): EL323, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31671964

ABSTRACT

This work presents an acoustic emission (AE) monitoring of slow dynamics in micro-cracked polymer concrete (PC) samples. In order to obtain calibrated damage states, AE was first used to characterize the micro-damage mechanisms in real time when PC samples are submitted to three-point bending tests. Then, an unsupervised classification of AE data based on the Principle Component Analysis and the k-means clustering was applied to classify AE data. The AE monitoring of the nonlinear relaxation of PC samples revealed the existence of a silence period followed by AE hits belonging to two different damage classes. A similarity appeared between the properties of the detected AE hits obtained during the nonlinear relaxation and the quasi-static tests. Finally, this work shows that the dynamics of both mechanisms during the nonlinear relaxation are clearly different.

12.
Opt Express ; 27(16): 23336-23356, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510613

ABSTRACT

This paper presents a comprehensive study on the contrast transfer function of de-noising algorithms. In order to cover a broad variety of methods, 45 de-noising algorithms are chosen considering their recognized efficiency in the different application domains of image processing. Advanced methods are targeted: wavelet transform-based algorithms with Daubechies, symlets, curvelets, contourlets, patch-based methods such as BM3D, NL-means algorithms and deep learning approaches; in addition, classical spatial filtering methods are considered, such as Wiener, median, Gauss filtering, and adaptive filtering approaches such as anisotropic diffusion and synthetic aperture radar filtering. The contrast transfer function is provided for each algorithm. Ranking of the set of de-noising algorithms is established according to proposed metrics. The paper provides practical methodology and novel results dedicated to the evaluation of the contrast transfer function of de-noising approaches from literature.

13.
J Opt Soc Am A Opt Image Sci Vis ; 36(2): A59-A66, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30874091

ABSTRACT

This paper presents a comparative study of multi-look approaches for de-noising phase maps from digital holographic interferometry. A database of 160 simulated phase fringe patterns with eight different phase fringe patterns with fringe diversity was computed. For each fringe pattern, 20 realistic noise realizations are generated in order to simulate a multi-look process with 20 inputs. A set of 22 de-noising algorithms was selected and processed for each simulation. Three approaches for multi-look processing are evaluated. Quantitative appraisal is obtained using two metrics. The results show good agreement for algorithm rankings obtained with both metrics. One singular and highly practical result of the study is that a multi-look approach with average looks before noise processing performs better than averaging computed with all de-noised looks. The results also demonstrate that the two-dimensional windowed Fourier transform filtering exhibits the best performance in all cases and that the block-matching 3D (BM3D) algorithm is second in the ranking.

14.
J Opt Soc Am A Opt Image Sci Vis ; 35(1): A53-A60, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29328085

ABSTRACT

This paper presents a reference-free metric for quantitative appraisal of de-noising algorithms for phase measurements in digital holography. In the literature, quality metrics are not self-contained because they require a noise-free reference phase fringe pattern in order to be computed. In practical situations, no exact phase is available to evaluate the quality of processing. In order to bypass such limitations, one needs a metric directly capable of providing information on how efficient the filtering is, without any help from any reference measurements and by only considering the measured available phase data. This paper presents a novel reference-free metric, called estimated phase error for quantitative appraisal of de-noising algorithms for noisy phase data processing. This metric is based on the computation of an estimator of the standard deviation of the phase error between data processed with an external algorithm and that from the evaluated algorithm. A benchmark, including 37 different de-noising algorithms, demonstrates that the proposed metric is capable of producing the same rankings as those obtained with classical metrics, requiring a reference phase. Application to phase data from mechanical testing demonstrates that the ranking obtained from experimental phase data is similar to that obtained during the benchmarking with simulated data.

15.
Light Sci Appl ; 7: 48, 2018.
Article in English | MEDLINE | ID: mdl-30839600

ABSTRACT

Digital holography (DH) has emerged as one of the most effective coherent imaging technologies. The technological developments of digital sensors and optical elements have made DH the primary approach in several research fields, from quantitative phase imaging to optical metrology and 3D display technologies, to name a few. Like many other digital imaging techniques, DH must cope with the issue of speckle artifacts, due to the coherent nature of the required light sources. Despite the complexity of the recently proposed de-speckling methods, many have not yet attained the required level of effectiveness. That is, a universal denoising strategy for completely suppressing holographic noise has not yet been established. Thus the removal of speckle noise from holographic images represents a bottleneck for the entire optics and photonics scientific community. This review article provides a broad discussion about the noise issue in DH, with the aim of covering the best-performing noise reduction approaches that have been proposed so far. Quantitative comparisons among these approaches will be presented.

16.
Opt Lett ; 42(2): 275-278, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-28081091

ABSTRACT

This Letter presents an alternative approach for image refocusing in digital Fresnel holography. In the literature, a large majority of reported focus detection criteria is based on amplitude contrast or phase contrast. We propose a focus detection criterion based on the speckle phase coherence factor. This factor reaches its maximum value at the best focus distance. At any reconstruction distance, estimation of the coherence factor is based on robust noise estimation from anisotropic diffusion. We propose a theoretical relation to estimate the coherence factor from the measured standard deviation. Experimental results for the case of three-color holographic imaging and interferometry are provided. Experimental results show the suitability of the proposed approach for image plane refocusing.

17.
Opt Lett ; 42(2): 322-325, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-28081103

ABSTRACT

This Letter proposes a robust processing of phase dislocations to recover continuous phase maps. The approach is based on combined unwrapping and inpainting methods. Phase dislocations are determined using an estimator based on the second order phase gradient. The algorithm is validated using a realistic simulation of phase dislocations, and the phase restoration exhibits only weak errors. A comparison with other inpainting algorithms is also provided, demonstrating the suitability of the approach. The approach is applied to experimental data from off-axis digital holographic interferometry. The phase dislocation from phase data from a wake flow at Mach 0.73 are identified and processed. Excellent phase restoration can be appreciated.

18.
Opt Express ; 24(25): 28713-28730, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27958515

ABSTRACT

Robust phase unwrapping in the presence of high noise remains an open issue. Especially, when both noise and fringe densities are high, pre-filtering may lead to phase dislocations and smoothing that complicate even more unwrapping. In this paper an approach to deal with high noise and to unwrap successfully phase data is proposed. Taking into account influence of noise in wrapped data, a calibration method of the 1st order spatial phase derivative is proposed and an iterative approach is presented. We demonstrate that the proposed method is able to process holographic phase data corrupted by non-Gaussian speckle decorrelation noise. The algorithm is validated by realistic numerical simulations in which the fringe density and noise standard deviation is progressively increased. Comparison with other established algorithms shows that the proposed algorithm exhibits better accuracy and shorter computation time, whereas others may fail to unwrap. The proposed algorithm is applied to phase data from digital holographic metrology and the unwrapped results demonstrate its practical effectiveness. The realistic simulations and experiments demonstrate that the proposed unwrapping algorithm is robust and fast in the presence of strong speckle decorrelation noise.

19.
Opt Express ; 24(13): 14322-43, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27410587

ABSTRACT

This paper discusses on a quantitative comparison of the performances of different advanced algorithms for phase data de-noising. In order to quantify the performances, several criteria are proposed: the gain in the signal-to-noise ratio, the Q index, the standard deviation of the phase error, and the signal to distortion ratio. The proposed methodology to investigate de-noising algorithms is based on the use of a realistic simulation of noise-corrupted phase data. A database including 25 fringe patterns divided into 5 patterns and 5 different signal-to-noise ratios was generated to evaluate the selected de-noising algorithms. A total of 34 algorithms divided into different families were evaluated. Quantitative appraisal leads to ranking within the considered criteria. A fairly good correlation between the signal-to-noise ratio gain and the quality index has been observed. There exists an anti-correlation between the phase error and the quality index which indicates that the phase errors are mainly structural distortions in the fringe pattern. Experimental results are thoroughly discussed in the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...