Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Commun ; 9(1): 1645, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29695780

ABSTRACT

Activation of free fatty acid receptor 1 (GPR40) by synthetic partial and full agonists occur via distinct allosteric sites. A crystal structure of GPR40-TAK-875 complex revealed the allosteric site for the partial agonist. Here we report the 2.76-Å crystal structure of human GPR40 in complex with a synthetic full agonist, compound 1, bound to the second allosteric site. Unlike TAK-875, which acts as a Gαq-coupled partial agonist, compound 1 is a dual Gαq and Gαs-coupled full agonist. compound 1 binds in the lipid-rich region of the receptor near intracellular loop 2 (ICL2), in which the stabilization of ICL2 by the ligand is likely the primary mechanism for the enhanced G protein activities. The endogenous free fatty acid (FFA), γ-linolenic acid, can be computationally modeled in this site. Both γ-linolenic acid and compound 1 exhibit positive cooperativity with TAK-875, suggesting that this site could also serve as a FFA binding site.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Incretins/metabolism , Insulin Secretion , Receptors, G-Protein-Coupled/agonists , Allosteric Site/genetics , Animals , Benzofurans/pharmacology , Benzofurans/therapeutic use , Crystallography, X-Ray , Diabetes Mellitus, Type 2/metabolism , Drug Synergism , HEK293 Cells , Humans , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Molecular Docking Simulation , Mutagenesis, Site-Directed , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sulfones/pharmacology , Sulfones/therapeutic use , gamma-Linolenic Acid/metabolism
2.
J Med Chem ; 61(3): 934-945, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29236497

ABSTRACT

As a part of our program to identify potent GPR40 agonists capable of being dosed orally once daily in humans, we incorporated fused heterocycles into our recently disclosed spiropiperidine and tetrahydroquinoline acid derivatives 1, 2, and 3 with the intention of lowering clearance and improving the maximum absorbable dose (Dabs). Hypothesis-driven structural modifications focused on moving away from the zwitterion-like structure. and mitigating the N-dealkylation and O-dealkylation issues led to triazolopyridine acid derivatives with unique pharmacology and superior pharmacokinetic properties. Compound 4 (LY3104607) demonstrated functional potency and glucose-dependent insulin secretion (GDIS) in primary islets from rats. Potent, efficacious, and durable dose-dependent reductions in glucose levels were seen during glucose tolerance test (GTT) studies. Low clearance, volume of distribution, and high oral bioavailability were observed in all species. The combination of enhanced pharmacology and pharmacokinetic properties supported further development of this compound as a potential glucose-lowering drug candidate.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drug Discovery , Hypoglycemic Agents/pharmacology , Pyridines/pharmacology , Receptors, G-Protein-Coupled/agonists , Triazoles/pharmacology , Administration, Oral , Animals , Dogs , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Male , Pyridines/administration & dosage , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats , Structure-Activity Relationship , Triazoles/administration & dosage , Triazoles/chemical synthesis , Triazoles/pharmacokinetics
3.
Sci Rep ; 7(1): 7899, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28801620

ABSTRACT

Aldosterone antagonists slow the progression of chronic kidney disease (CKD), but their use is limited by hyperkalemia, especially when associated with RAS inhibitors. We examined the renoprotective effects of Ly, a novel non-steroidal mineralocorticoid receptor (MR) blocker, through two experimental protocols: In Protocol 1, male Munich-Wistar rats underwent 5/6 renal ablation (Nx), being divided into: Nx+V, receiving vehicle, Nx+Eple, given eplerenone, 150 mg/kg/day, and Nx+Ly, given Ly, 20 mg/kg/day. A group of untreated sham-operated rats was also studied. Ly markedly raised plasma renin activity (PRA) and aldosterone, and exerted more effective anti-albuminuric and renoprotective action than eplerenone. In Protocol 2, Nx rats remained untreated until Day 60, when they were divided into: Nx+V receiving vehicle; Nx+L treated with losartan, 50 mg/kg/day; Nx+L+Eple, given losartan and eplerenone, and Nx+L+Ly, given losartan and Ly. Treatments lasted for 90 days. As an add-on to losartan, Ly normalized blood pressure and albuminuria, and prevented CKD progression more effectively than eplerenone. This effect was associated with strong stimulation of PRA and aldosterone. Despite exhibiting higher affinity for the MR than either eplerenone or spironolactone, Ly caused no hyperkalemia. Ly may become a novel asset in the effort to detain the progression of CKD.


Subject(s)
Mineralocorticoid Receptor Antagonists/administration & dosage , Renal Insufficiency, Chronic/drug therapy , Albuminuria/prevention & control , Aldosterone/blood , Animals , Blood Pressure , Eplerenone/administration & dosage , Losartan/administration & dosage , Nephrectomy , Rats, Wistar , Renin/blood , Treatment Outcome
4.
J Med Chem ; 59(24): 10891-10916, 2016 12 22.
Article in English | MEDLINE | ID: mdl-27749056

ABSTRACT

The G protein-coupled receptor 40 (GPR40) also known as free fatty acid receptor 1 (FFAR1) is highly expressed in pancreatic, islet ß-cells and responds to endogenous fatty acids, resulting in amplification of insulin secretion only in the presence of elevated glucose levels. Hypothesis driven structural modifications to endogenous FFAs, focused on breaking planarity and reducing lipophilicity, led to the identification of spiropiperidine and tetrahydroquinoline acid derivatives as GPR40 agonists with unique pharmacology, selectivity, and pharmacokinetic properties. Compounds 1 (LY2881835), 2 (LY2922083), and 3 (LY2922470) demonstrated potent, efficacious, and durable dose-dependent reductions in glucose levels along with significant increases in insulin and GLP-1 secretion during preclinical testing. A clinical study with 3 administered to subjects with T2DM provided proof of concept of 3 as a potential glucose-lowering therapy. This manuscript summarizes the scientific rationale, medicinal chemistry, preclinical, and early development data of this new class of GPR40 agonists.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Drug Discovery , Hypoglycemic Agents/pharmacology , Piperidines/pharmacology , Receptors, G-Protein-Coupled/agonists , Spiro Compounds/pharmacology , Animals , Dose-Response Relationship, Drug , Glucose Tolerance Test , HEK293 Cells , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Rats , Rats, Zucker , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 26(14): 3274-3277, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27261179

ABSTRACT

A series of triaryl pyrazoles were identified as potent pan antagonists for the retinoic acid receptors (RARs) α, ß and γ. X-ray crystallography and structure-based drug design were used to improve selectivity for RARγ by targeting residue differences in the ligand binding pockets of these receptors. This resulted in the discovery of novel antagonists which maintained RARγ potency but were greater than 500-fold selective versus RARα and RARß. The potent and selective RARγ antagonist LY2955303 demonstrated good pharmacokinetic properties and was efficacious in the MIA model of osteoarthritis-like joint pain. This compound demonstrated an improved margin to RARα-mediated adverse effects.


Subject(s)
Drug Design , Osteoarthritis/drug therapy , Pain/drug therapy , Piperazines/pharmacology , Pyrazoles/pharmacology , Receptors, Retinoic Acid/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , Retinoic Acid Receptor gamma
6.
Pharmacol Res Perspect ; 4(6): e00278, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28097011

ABSTRACT

LY2881835 is a selective, potent, and efficacious GPR40 agonist. The objective of the studies described here was to examine the pharmacological properties of LY2881835 in preclinical models of T2D. Significant increases in insulin secretion were detected when LY2881835 was tested in primary islets from WT mice but not in islets from GPR40 KO mice. Furthermore, LY2881835 potentiated glucose stimulated insulin secretion in normal lean mice. Acute administration of LY2881835 lowered glucose during OGTTs in WT mice but not in GPR40 KO mice. These findings demonstrate that LY2881835 induces GPR40-mediated activity ex vivo and in vivo. LY2881835 was administered orally at 10 mg/kg to diet-induced obese (DIO) mice (an early model of T2D due to insulin resistance) for 14 days. Statistically significant reductions in glucose were seen during OGTTs performed on days 1 and 15. When a study was done for 3 weeks in Zucker fa/fa rats, a rat model of insulin resistance, normalization of blood glucose levels equivalent to those seen in lean rats was observed. A similar study was performed in streptozotocin (STZ)-treated DIO mice to explore glucose control in a late model of T2D. In this model, pancreatic insulin content was reduced ~80% due to STZ-treatment plus the mice were insulin resistant due to their high fat diet. Glucose AUCs were significantly reduced during OGTTs done on days 1, 7, and 14 compared to control mice. In conclusion, these results demonstrate that LY2881835 functions as a GPR40-specific insulin secretagogue mediating immediate and durable glucose control in rodent models of early- and late-stage T2D.

7.
J Med Chem ; 58(24): 9768-72, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26568144

ABSTRACT

The farnesoid X receptor (FXR) is a member of the "metabolic" subfamily of nuclear receptors. Several FXR agonists have been reported in the literature to have profound effects on plasma lipids in animal models. To discover novel and effective therapies for dyslipidemia and atherosclerosis, we have developed a series of potent FXR agonists that robustly lower plasma LDL and vLDL in LDLr-/- mice. To this end the novel piperidinylisoxazole system LY2562175 was discovered. This molecule is a potent and selective FXR agonist in vitro and has robust lipid modulating properties, lowering LDL and triglycerides while raising HDL in preclinical species. The preclinical ADME properties of LY2562175 were consistent with enabling once daily dosing in humans, and it was ultimately advanced to the clinic for evaluation in humans. The synthesis and biological profile of this molecule is discussed.


Subject(s)
Dyslipidemias/drug therapy , Hypolipidemic Agents/chemistry , Indoles/chemistry , Isoxazoles/chemistry , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Cholesterol/blood , Dogs , Double-Blind Method , Female , HEK293 Cells , Humans , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/pharmacology , Indoles/pharmacokinetics , Indoles/pharmacology , Isoxazoles/pharmacokinetics , Isoxazoles/pharmacology , Macaca fascicularis , Male , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley , Receptors, LDL/genetics , Structure-Activity Relationship , Triglycerides/blood
8.
Bioorg Med Chem Lett ; 25(7): 1377-80, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25752984

ABSTRACT

The design, synthesis, and structure activity relationships for a novel series of indoles as potent, selective, thyroid hormone receptor ß (TRß) agonists is described. Compounds with >50× binding selectivity for TRß over TRα were generated and evaluation of compound 1c from this series in a model of dyslipidemia demonstrated positive effects on plasma lipid endpoints in vivo.


Subject(s)
Acetates/pharmacology , Drug Design , Indoles/pharmacology , Thyroid Hormone Receptors beta/agonists , Acetates/chemical synthesis , Acetates/chemistry , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
9.
J Biomol Screen ; 16(2): 183-91, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21297105

ABSTRACT

The retinoid acid receptor-related orphan receptors (RORs) represent important targets for the treatment of metabolic and immune disorders. Here the authors describe the application of AlphaScreen(®) technology to develop a high-throughput screening (HTS)-compatible assay to facilitate the discovery of RORα modulators. Using the ligand binding domain (LBD) of RORα and a peptide derived from the NR1 box of the nuclear receptor coactivator PGC-1α, a 384-well format assay was developed exhibiting high sensitivity, requiring only low nanomolar concentration of reagents. Recently, it was shown that oxysterols such as 7α-hydroxycholesterol (7α-OHC) function as modulators of the RORs. In this assay, 7α-OHC produced a concentration-response curve with an EC(50) of 162 nM, a Z' factor of 0.6, and a signal-to-background (S/B) ratio of 4.2, demonstrating that the assay is HTS compatible. Validation of the assay was afforded by screening against the Sigma LOPAC1280™ library in a 384-well format. In summary, the results presented here demonstrate that this assay can be used to screen large chemical libraries to discover novel modulators of RORα.


Subject(s)
Drug Discovery/methods , High-Throughput Screening Assays , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Heat-Shock Proteins/metabolism , Humans , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Protein Binding , Reproducibility of Results , Sensitivity and Specificity , Transcription Factors/metabolism
10.
ACS Med Chem Lett ; 2(2): 148-53, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-24900294

ABSTRACT

We report the synthesis and characterization of novel 3-aryl indoles as potent and efficacious progesterone receptor (PR) antagonists with potential for the treatment of uterine fibroids. These compounds demonstrated excellent selectivity over other steroid nuclear hormone receptors such as the mineralocorticoid receptor (MR). They were prepared from 2-bromo-6-nitro indole in four to six steps using a Suzuki cross-coupling as the key step. Compound 8f was orally active in the complement 3 model of progesterone antagonism in the rat uterus and demonstrated partial antagonism in the McPhail model of progesterone activity.

11.
J Bone Miner Res ; 25(6): 1326-36, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20200930

ABSTRACT

Vitamin D(3) analogues were shown to be beneficial for osteoporosis and other indications, but their narrow therapeutic window between efficacy and hypercalcemia has limited their clinical utility. A nonsecosteroidal, tissue-selective, orally bioavailable, vitamin D receptor (VDR) ligand was ascertained to be efficacious in bone while having modest calcemic effects in vivo. This compound (VDRM2) potently induced Retinoid X Receptor alpha (RXR)-VDR heterodimerization (EC(50) = 7.1 +/- 1.6 nM) and induced osteocalcin promoter activity (EC(50) = 1.9 +/- 1.6 nM). VDRM2 was less potent in inducing Ca(2+) channel transient receptor potential cation channel, subfamily V, member 6 (TRPV6) expression (EC(50) = 37 +/- 12 nM). VDRM2 then was evaluated in osteopenic ovariectomized (OVX) rats and shown to dose-dependently restore vertebral bone mineral density (BMD) from OVX to sham levels at 0.08 microg/kg per day. Hypercalcemia was observed at a dose of 4.6 microg/kg per day of VDRM2, suggesting a safety margin of 57 [90% confidence interval (CI) 35-91]. 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D], ED71, and alfacalcidol restored BMD at 0.030, 0.0055, and 0.046 microg/kg per day, respectively, whereas hypercalcemia was observed at 0.22, 0.027, and 0.23 microg/kg per day, indicating a safety margin of 7.3, 4.9, and 5.0, respectively (90% CIs 4.1-13, 3.2-7.7, and 3.5-6.7, respectively). Histomorphometry showed that VDRM2 increased cortical bone area and stimulated the periosteal bone-formation rate relative to OVX at doses below the hypercalcemic dose. By contrast, ED71 increased the periosteal bone-formation rate only above the hypercalcemic dose. VDRM2 suppressed eroded surface on trabecular bone surfaces at normal serum calcium dosage levels, suggesting dual anabolic and antiresorptive activity. In summary, vitamin D analogues were more potent than VDRM2, but VDRM2 had a greater safety margin, suggesting possible therapeutic potential.


Subject(s)
Bone and Bones/pathology , Cholecalciferol/therapeutic use , Hypercalcemia/drug therapy , Receptors, Calcitriol/metabolism , Animals , Binding, Competitive/drug effects , Biological Assay , Biomechanical Phenomena/drug effects , Bone Density/drug effects , Bone Diseases, Metabolic/complications , Bone Diseases, Metabolic/pathology , Bone and Bones/drug effects , Cholecalciferol/analogs & derivatives , Cholecalciferol/pharmacology , Female , Humans , Hypercalcemia/complications , Hypercalcemia/pathology , Ligands , Luciferases/metabolism , Osteocalcin/metabolism , Protein Multimerization/drug effects , Rats , Rats, Sprague-Dawley , Retinoid X Receptors/metabolism , TRPV Cation Channels/genetics , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Treatment Outcome
12.
Biochemistry ; 48(40): 9668-76, 2009 Oct 13.
Article in English | MEDLINE | ID: mdl-19739677

ABSTRACT

Here we present the use of hydrogen-deuterium exchange (HDX) mass spectrometry in analyzing the estrogen receptor beta ligand binding domain (ERbeta LBD) in the absence and presence of a variety of chemical compounds with different binding modes and pharmacological properties. Previously, we reported the use of HDX as a method for predicting the tissue selectivity of ERalpha ligands. HDX profiles of ERalpha LBD in complex with ligand could differentiate compounds of the same chemotype. In contrast, similar analysis of ERbeta LBD showed correlation to the compound chemical structures but little correlation with compound tissue selectivity. The different HDX patterns observed for ERbeta LBD when compared to those for ERalpha LBD bound to the same chemical compounds serve as an indication that ERbeta LBD undergoes a different structural response to the same ligand when compared to ERalpha LBD. The conformational dynamics revealed by HDX for ERbeta LBD together with those for ERalpha LBD shed light on ER ligand interactions and offer new structural insights. The compound-specific perturbations in HDX kinetics observed for each of the two isoforms should aid the development of subtype-selective ER ligands.


Subject(s)
Deuterium Exchange Measurement , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Cell Line , Crystallography, X-Ray , Deuterium Exchange Measurement/methods , Estradiol/metabolism , Estrogen Receptor alpha/chemistry , Estrogen Receptor beta/chemistry , Genistein/metabolism , Humans , Ligands , Protein Binding , Protein Conformation , Protein Structure, Secondary , Tamoxifen/analogs & derivatives , Tamoxifen/metabolism
13.
Proc Natl Acad Sci U S A ; 105(20): 7171-6, 2008 May 20.
Article in English | MEDLINE | ID: mdl-18474858

ABSTRACT

Here, we demonstrate that a single biochemical assay is able to predict the tissue-selective pharmacology of an array of selective estrogen receptor modulators (SERMs). We describe an approach to classify estrogen receptor (ER) modulators based on dynamics of the receptor-ligand complex as probed with hydrogen/deuterium exchange (HDX) mass spectrometry. Differential HDX mapping coupled with cluster and discriminate analysis effectively predicted tissue-selective function in most, but not all, cases tested. We demonstrate that analysis of dynamics of the receptor-ligand complex facilitates binning of ER modulators into distinct groups based on structural dynamics. Importantly, we were able to differentiate small structural changes within ER ligands of the same chemotype. In addition, HDX revealed differentially stabilized regions within the ligand-binding pocket that may contribute to the different pharmacology phenotypes of the compounds independent of helix 12 positioning. In summary, HDX provides a sensitive and rapid approach to classify modulators of the estrogen receptor that correlates with their pharmacological profile.


Subject(s)
Biochemistry/methods , Selective Estrogen Receptor Modulators/pharmacology , Cell Line, Tumor , Cluster Analysis , Crystallography, X-Ray , Data Interpretation, Statistical , Humans , Ligands , Mass Spectrometry/methods , Models, Biological , Models, Molecular , Models, Statistical , Molecular Conformation , Protein Binding , Tissue Distribution
14.
Bioorg Med Chem Lett ; 17(24): 6744-9, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-18029178

ABSTRACT

A series of potent amide linked PPARgamma/delta dual agonists (1a) has been discovered through rational design. In the ZDF rat model of type 2 diabetes, compound (R)-3-[4-(3-{1-[(5-chloro-1,3-dimethyl-1H-indole-2-carbonyl)-amino]-ethyl}-5-fluoro-phenoxy)-2-ethyl-phenyl]-propionic acid (42) from this series has demonstrated glucose lowering efficacy comparable to the marketed PPARgamma agonist rosiglitazone with less weight gain.


Subject(s)
Amides/chemistry , Drug Design , Indoles/chemical synthesis , PPAR delta/agonists , PPAR gamma/agonists , Animals , Combinatorial Chemistry Techniques , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Indoles/chemistry , Indoles/pharmacology , Molecular Structure , Rats
15.
Bioorg Med Chem Lett ; 17(4): 1052-5, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17129725

ABSTRACT

The design and synthesis of dual PPAR gamma/delta agonist (R)-3-{2-ethyl-4-[3-(4-ethyl-2-pyridin-2-yl-phenoxy)-butoxy]-phenyl}propionic acid is described. This compound dose-dependently lowered plasma glucose in hyperglycemic male Zucker diabetic fatty (ZDF) rats and produced less weight gain relative to rosiglitazone at an equivalent level of glucose control.


Subject(s)
Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , PPAR delta/agonists , PPAR gamma/agonists , Animals , Blood Glucose/metabolism , Dose-Response Relationship, Drug , Drug Design , Female , Half-Life , Humans , Hypoglycemic Agents/pharmacokinetics , Indicators and Reagents , Insulin/blood , Male , Rats , Rats, Sprague-Dawley , Rats, Zucker , Rosiglitazone , Structure-Activity Relationship , Thiazolidinediones/pharmacology , Weight Gain/drug effects
16.
J Med Chem ; 49(21): 6155-7, 2006 Oct 19.
Article in English | MEDLINE | ID: mdl-17034120

ABSTRACT

Benzopyran selective estrogen receptor beta agonist-1 (SERBA-1) shows potent, selective binding and agonist function in estrogen receptor beta (ERbeta) in vitro assays. X-ray crystal structures of SERBA-1 in ERalpha and beta help explain observed beta-selectivity of this ligand. SERBA-1 in vivo demonstrates involution of the ventral prostate in CD-1 mice (ERbeta effect), while having no effect on gonadal hormone levels (ERalpha effect) at 10x the efficacious dose, consistent with in vitro properties of this molecule.


Subject(s)
Estrogen Receptor beta/agonists , Flavonoids/chemical synthesis , Prostatic Hyperplasia/drug therapy , Selective Estrogen Receptor Modulators/chemical synthesis , Animals , Binding Sites , Crystallography, X-Ray , Estrogen Receptor alpha/chemistry , Estrogen Receptor beta/chemistry , Estrogens , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Ligands , Male , Mice , Models, Molecular , Molecular Structure , Prostate/drug effects , Prostate/pathology , Prostatic Hyperplasia/pathology , Selective Estrogen Receptor Modulators/chemistry , Selective Estrogen Receptor Modulators/pharmacology , Structure-Activity Relationship
19.
J Med Chem ; 49(19): 5649-52, 2006 Sep 21.
Article in English | MEDLINE | ID: mdl-16970391

ABSTRACT

The design and synthesis of the dual peroxisome proliferator-activated receptor (PPAR) gamma/delta agonist (R)-3-{4-[3-(4-chloro-2-phenoxy-phenoxy)-butoxy]-2-ethyl-phenyl}-propionic acid (20) for the treatment of type 2 diabetes and associated dyslipidemia is described. The compound possesses a potent dual hPPAR gamma/delta agonist profile (IC(50) = 19 nM/4 nM; EC(50) = 102 nM/6 nM for hPPARgamma and hPPARdelta, respectively). In preclinical models, the compound improves insulin sensitivity and reverses diabetic hyperglycemia with less weight gain at a given level of glucose control relative to rosiglitazone.


Subject(s)
Hypoglycemic Agents/chemical synthesis , PPAR delta/agonists , PPAR gamma/agonists , Phenyl Ethers/chemical synthesis , Phenylpropionates/chemical synthesis , Weight Gain/drug effects , Animals , Blood Glucose/metabolism , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Drug Design , Dyslipidemias/drug therapy , Female , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Male , Mice , PPAR alpha/genetics , Phenyl Ethers/chemistry , Phenyl Ethers/pharmacology , Phenylpropionates/chemistry , Phenylpropionates/pharmacology , Radioligand Assay , Stereoisomerism , Transcriptional Activation
20.
Endocrinology ; 147(2): 1044-53, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16269450

ABSTRACT

Specific retinoid X receptor (RXR) agonists, such as LG100268 (LG268), and the thiazolidinedione (TZD) PPARgamma agonists, such as rosiglitazone, produce insulin sensitization in rodent models of insulin resistance and type 2 diabetes. In sharp contrast to the TZDs that produce significant increases in body weight gain, RXR agonists reduce body weight gain and food consumption. Unfortunately, RXR agonists also suppress the thyroid hormone axis and generally produce hypertriglyceridemia. Heterodimer-selective RXR modulators have been identified that, in rodents, retain the metabolic benefits of RXR agonists with reduced side effects. These modulators bind specifically to RXR with high affinity and are RXR homodimer partial agonists. Although RXR agonists activate many heterodimer partners, these modulators selectively activate RXR:PPARalpha and RXR:PPARgamma, but not RXR:RARalpha, RXR:LXRalpha, RXR:LXRbeta, or RXR:FXRalpha. We report the in vivo characterization of one RXR modulator, LG101506 (LG1506). In Zucker fatty (fa/fa) rats, LG1506 is a potent insulin sensitizer that also enhances the insulin-sensitizing activities of rosiglitazone. Administration of LG1506 reduces both body weight gain and food consumption and blocks the TZD-induced weight gain when coadministered with rosiglitazone. LG1506 does not significantly suppress the thyroid hormone axis in rats, nor does it elevate triglycerides in Sprague Dawley rats. However, LG1506 produces a unique pattern of triglycerides elevation in Zucker rats. LG1506 elevates high-density lipoprotein cholesterol in humanized apolipoprotein A-1-transgenic mice. Therefore, selective RXR modulators are a promising approach for developing improved therapies for type 2 diabetes, although additional studies are needed to understand the strain-specific effects on triglycerides.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Fatty Acids, Unsaturated/administration & dosage , Hypoglycemic Agents/administration & dosage , Obesity/drug therapy , Phenyl Ethers/administration & dosage , Retinoid X Receptors/agonists , Thiazolidinediones/administration & dosage , Analysis of Variance , Animals , Apolipoprotein A-I/genetics , Apolipoprotein A-I/physiology , Area Under Curve , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Dose-Response Relationship, Drug , Drug Interactions , Female , Hypoglycemic Agents/therapeutic use , Mice , Mice, Transgenic , Obesity/blood , Obesity/complications , PPAR gamma/agonists , PPAR gamma/metabolism , Rats , Rats, Sprague-Dawley , Rats, Zucker , Retinoid X Receptors/metabolism , Rosiglitazone , Statistics, Nonparametric , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Thyroid Gland/drug effects , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...