Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pac Symp Biocomput ; 29: 404-418, 2024.
Article in English | MEDLINE | ID: mdl-38160295

ABSTRACT

Precision medicine models often perform better for populations of European ancestry due to the over-representation of this group in the genomic datasets and large-scale biobanks from which the models are constructed. As a result, prediction models may misrepresent or provide less accurate treatment recommendations for underrepresented populations, contributing to health disparities. This study introduces an adaptable machine learning toolkit that integrates multiple existing methodologies and novel techniques to enhance the prediction accuracy for underrepresented populations in genomic datasets. By leveraging machine learning techniques, including gradient boosting and automated methods, coupled with novel population-conditional re-sampling techniques, our method significantly improves the phenotypic prediction from single nucleotide polymorphism (SNP) data for diverse populations. We evaluate our approach using the UK Biobank, which is composed primarily of British individuals with European ancestry, and a minority representation of groups with Asian and African ancestry. Performance metrics demonstrate substantial improvements in phenotype prediction for underrepresented groups, achieving prediction accuracy comparable to that of the majority group. This approach represents a significant step towards improving prediction accuracy amidst current dataset diversity challenges. By integrating a tailored pipeline, our approach fosters more equitable validity and utility of statistical genetics methods, paving the way for more inclusive models and outcomes.


Subject(s)
Computational Biology , Machine Learning , Humans , Minority Groups , Phenotype , White People , UK Biobank
2.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873492

ABSTRACT

The lack of diversity in genomic datasets, currently skewed towards individuals of European ancestry, presents a challenge in developing inclusive biomedical models. The scarcity of such data is particularly evident in labeled datasets that include genomic data linked to electronic health records. To address this gap, this paper presents PopGenAdapt, a genotype-to-phenotype prediction model which adopts semi-supervised domain adaptation (SSDA) techniques originally proposed for computer vision. PopGenAdapt is designed to leverage the substantial labeled data available from individuals of European ancestry, as well as the limited labeled and the larger amount of unlabeled data from currently underrepresented populations. The method is evaluated in underrepresented populations from Nigeria, Sri Lanka, and Hawaii for the prediction of several disease outcomes. The results suggest a significant improvement in the performance of genotype-to-phenotype models for these populations over state-of-the-art supervised learning methods, setting SSDA as a promising strategy for creating more inclusive machine learning models in biomedical research.

3.
bioRxiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37904983

ABSTRACT

Precision medicine models often perform better for populations of European ancestry due to the over-representation of this group in the genomic datasets and large-scale biobanks from which the models are constructed. As a result, prediction models may misrepresent or provide less accurate treatment recommendations for underrepresented populations, contributing to health disparities. This study introduces an adaptable machine learning toolkit that integrates multiple existing methodologies and novel techniques to enhance the prediction accuracy for underrepresented populations in genomic datasets. By leveraging machine learning techniques, including gradient boosting and automated methods, coupled with novel population-conditional re-sampling techniques, our method significantly improves the phenotypic prediction from single nucleotide polymorphism (SNP) data for diverse populations. We evaluate our approach using the UK Biobank, which is composed primarily of British individuals with European ancestry, and a minority representation of groups with Asian and African ancestry. Performance metrics demonstrate substantial improvements in phenotype prediction for underrepresented groups, achieving prediction accuracy comparable to that of the majority group. This approach represents a significant step towards improving prediction accuracy amidst current dataset diversity challenges. By integrating a tailored pipeline, our approach fosters more equitable validity and utility of statistical genetics methods, paving the way for more inclusive models and outcomes.

4.
Nat Comput Sci ; 3(7): 621-629, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37600116

ABSTRACT

Characterizing the genetic structure of large cohorts has become increasingly important as genetic studies extend to massive, increasingly diverse biobanks. Popular methods decompose individual genomes into fractional cluster assignments with each cluster representing a vector of DNA variant frequencies. However, with rapidly increasing biobank sizes, these methods have become computationally intractable. Here we present Neural ADMIXTURE, a neural network autoencoder that follows the same modeling assumptions as the current standard algorithm, ADMIXTURE, while reducing the compute time by orders of magnitude surpassing even the fastest alternatives. One month of continuous compute using ADMIXTURE can be reduced to just hours with Neural ADMIXTURE. A multi-head approach allows Neural ADMIXTURE to offer even further acceleration by calculating multiple cluster numbers in a single run. Furthermore, the models can be stored, allowing cluster assignment to be performed on new data in linear time without needing to share the training samples.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3558-3562, 2022 07.
Article in English | MEDLINE | ID: mdl-36085664

ABSTRACT

We analyze dog genotypes (i.e., positions of dog DNA sequences that often vary between different dogs) in order to predict the corresponding phenotypes (i.e., unique observed characteristics). More specifically, given chromosome data from a dog, we aim to predict the breed, height, and weight. We explore a variety of linear and non-linear classification and regression techniques to accomplish these three tasks. We also investigate the use of a neural network (both in linear and non-linear modes) for breed classification and compare the performance to traditional statistical methods. We show that linear methods generally outperform or match the performance of non-linear methods for breed classification. However, we show that the reverse is true for height and weight regression. Finally, we evaluate the results of all of these methods based on the number of input features used in the analysis. We conduct experiments using different fractions of the full genomic sequences, resulting in input sequences ranging from 20 SNPs to ∼200k SNPs. In doing so, we explore the impact of using a very limited number of SNPs for prediction. Our experiments demonstrate that these phenotypes in dogs can be predicted with as few as 0.5% of randomly selected SNPs (i.e., 992 SNPs) and that dog breeds can be classified with 50% balanced accuracy with as few as 0.02% SNPs (i.e., 40 SNPs).


Subject(s)
Genomics , Polymorphism, Single Nucleotide , Animals , Dogs , Genotype , Neural Networks, Computer , Phenotype
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1379-1383, 2022 07.
Article in English | MEDLINE | ID: mdl-36086656

ABSTRACT

The generation of synthetic genomic sequences using neural networks has potential to ameliorate privacy and data sharing concerns and to mitigate potential bias within datasets due to under-representation of some population groups. However, there is not a consensus on which architectures, training procedures, and evaluation metrics should be used when simulating single nucleotide polymorphism (SNP) sequences with neural networks. In this paper, we explore the use of Generative Moment Matching Networks (GMMNs) for SNP simulation, we present some architectural and procedural changes to properly train the networks, and we introduce an evaluation scheme to qualitatively and quantitatively assess the quality of the simulated sequences.


Subject(s)
Information Dissemination , Neural Networks, Computer , Computer Simulation , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...