Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007446

ABSTRACT

BACKGROUND: A 4-year experiment evaluated the effects of different integrated weed management (IWM) programs on the evolution of a Echinochloa crus-galli population resistant to acetolactate synthase (ALS) inhibitors in a maize cropping system. The programs included the continued use of ALS inhibitors, mixing them with alternative herbicides, or without ALS-inhibitors, in all cases under maize monocrop or a biennial crop rotation. RESULTS: IWM programs that relied solely on non-ALS-inhibitors usually achieved high control levels across years (> 90%). Additionally, Trp574Leu-resistant plants became prevalent (> 90%) in programs only using ALS inhibitors, while in the rest the frequency of susceptible plants did not substantially decrease below 40%. Regarding the other monitored grass weeds, Digitaria sanguinalis and Panicum dichotomiflorum were effectively controlled in programs using ALS-inhibitors without soybean rotation or in programs without ALS-inhibitors altogether, excepting the program relying on an 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor under maize monocrop for the latter species (0%). CONCLUSION: At the end of the experiment, the only IWM programs that reduced infestation levels were the one without ALS-inhibitors under soybean rotation, and the one with standard pre-emergence treatments. These findings highlight the effectiveness of crop rotation and alternative herbicides both pre- or post-emergence in controlling E. crus-galli. ALS-inhibitors, while challenged by resistance in E. crus-galli, remain valuable tools for managing other grass weed species in maize. It is crucial to adapt IWM strategies for herbicide-resistant E. crus-galli and other grass weed populations to mitigate the further evolution of resistance. © 2024 Corteva Agriscience. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Pest Manag Sci ; 79(12): 4886-4896, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37515753

ABSTRACT

BACKGROUND: Amaranthus palmeri is an aggressive annual weed native to the United States, which has become invasive in some European countries. Populations resistant to acetolactate synthase (ALS) inhibitors have been recorded in Spain and Italy, but the evolutionary origin of the resistance traits remains unknown. Bioassays were conducted to identify cross-resistance to ALS inhibitors and a haplotype-based genetic approach was used to elucidate the origin and distribution of resistance in both countries. RESULTS: Amaranthus palmeri populations were resistant to thifensulfuron-methyl and imazamox, and the 574-Leu mutant ALS allele was found to be the main cause of resistance among them. In two Spanish populations, 376-Glu and 197-Thr mutant ALS alleles were also found. The haplotype analyses revealed the presence of two and four distinct 574-Leu mutant haplotypes in the Italian and Spanish populations, respectively. None was common to both countries, but some mutant haplotypes were shared between geographically close populations or between populations more than 100 km apart. Wide genetic diversity was found in two very close Spanish populations. CONCLUSION: ALS-resistant A. palmeri populations were introduced to Italy and Spain from outside Europe. Populations from both countries have different evolutionary histories and originate from independent introduction events. ALS resistance then spread over short and long distances by seed dispersal. The higher number and genetic diversity among mutant haplotypes from the Spanish populations indicated recurrent invasions. The implementation of control tactics to limit seed dispersal and the establishment of A. palmeri is recommended in both countries. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Acetolactate Synthase , Amaranthus , Herbicides , Herbicides/pharmacology , Amaranthus/genetics , Acetolactate Synthase/genetics , Herbicide Resistance/genetics , Spain , Italy
3.
Plants (Basel) ; 12(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36771549

ABSTRACT

Herbicide-resistant weeds currently challenge sustainable food production in almost all cropping systems in Europe. Herbicide resistance is increasing, and some European countries are among the most affected globally, such as Spain and France. This situation is worsening not only due to herbicide use restrictions but also due to climate change, rendering Mediterranean countries such as Spain particularly susceptible. Therefore, focus should be aimed at preventive measures, which include those not only based on integrated weed management strategies but also based on a very good knowledge of the biology and ecology of each weed species. The main objective of this review is to provide an overview of potential future herbicide-resistant cases that can evolve in the near future in Europe. We use Spain as the case study, as it is the most affected country in Europe and because it is at risk due to global warming. For different resistant cases detailed on a crop basis, adequate prevention and management measures will be provided in order to avoid resistance evolution relative to the sites of action that are most likely to generate resistant biotypes due to expected high selection pressures.

4.
Front Plant Sci ; 12: 625138, 2021.
Article in English | MEDLINE | ID: mdl-33613607

ABSTRACT

Lolium rigidum is one the worst herbicide resistant (HR) weeds worldwide due to its proneness to evolve multiple and cross resistance to several sites of action (SoA). In winter cereals crops in Spain, resistance to acetolactate synthase (ALS)- and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides has become widespread, with farmers having to rely on pre-emergence herbicides over the last two decades to maintain weed control. Recently, lack of control with very long-chain fatty acid synthesis (VLCFAS)-inhibiting herbicides has been reported in HR populations that are difficult to manage by chemical means. In this study, three Spanish populations of L. rigidum from winter cereals were confirmed as being resistant to ALS- and ACCase-inhibiting herbicides, with broad-ranging resistance toward the different chemistries tested. In addition, reduced sensitivity to photosystem II-, VLCFAS-, and phytoene desaturase-inhibiting herbicides were confirmed across the three populations. Resistance to ACCase-inhibiting herbicides was associated with point mutations in positions Trp-2027 and Asp-2078 of the enzyme conferring target site resistance (TSR), while none were detected in the ALS enzyme. Additionally, HR populations contained enhanced amounts of an ortholog of the glutathione transferase phi (F) class 1 (GSTF1) protein, a functional biomarker of non-target-site resistance (NTSR), as confirmed by enzyme-linked immunosorbent assays. Further evidence of NTSR was obtained in dose-response experiments with prosulfocarb applied post-emergence, following pre-treatment with the cytochrome P450 monooxygenase inhibitor malathion, which partially reversed resistance. This study confirms the evolution of multiple and cross resistance to ALS- and ACCase inhibiting herbicides in L. rigidum from Spain by mechanisms consistent with the presence of both TSR and NTSR. Moreover, the results suggest that NTSR, probably by means of enhanced metabolism involving more than one detoxifying enzyme family, confers cross resistance to other SoA. The study further demonstrates the urgent need to monitor and prevent the further evolution of herbicide resistance in L. rigidum in Mediterranean areas.

SELECTION OF CITATIONS
SEARCH DETAIL