Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Ecol Food Nutr ; 59(3): 243-262, 2020.
Article in English | MEDLINE | ID: mdl-31778086

ABSTRACT

The study aimed to quantify the immediate effects of dietary diversification, food safety, and hygiene interventions on child undernutrition in four rural villages in Kongwa district of central Tanzania. One hundred mothers with their children of less than 24 months old were recruited for this study. The difference-in-difference (DID) method was used to assess the effects of intensive intervention through a learning-by-doing process on the topic of aflatoxin free diversified food utilization and improved hygiene practices. Periodic anthropometric measurements were conducted on the 0th, 7th, 14th, and 21st days, and DID estimator showed the significant and positive average marginal effects of the intervention on Z-Scores being 0.459, 0.252, and 0.493 for wasting, stunting, and underweight, respectively. Notably, at the end of the study, the mean aflatoxin M1 level in urine samples decreased by 64% in the intervention group, while it decreased by 11% in the control group. The study provides quantitative evidence on intensive 21-day training for mothers incorporating integrated technologies yielded positive impacts on their children's nutritional outcomes.


Subject(s)
Aflatoxins/urine , Diet/standards , Hygiene/standards , Infant Nutrition Disorders/prevention & control , Infant Nutritional Physiological Phenomena , Mothers/education , Female , Humans , Infant , Male , Micronutrients/administration & dosage , Nutritional Status , Rural Population , Tanzania/epidemiology
2.
Mycotoxin Res ; 34(3): 195-204, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29679369

ABSTRACT

Aflatoxin-lysine (AFB1-lys) adduct levels in blood samples collected from 230 individuals living in three districts of Malawi (Kasungu, Mchinji, and Nkhotakota) and aflatoxin B1 (AFB1) levels in groundnut and maize samples collected from their respective homesteads were determined using indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) methods. AFB1-lys adducts were detected in 67% of blood samples, with a mean concentration of 20.5 ± 23.4 pg/mg of albumin. AFB1 was detected in 91% of groundnut samples and in 70% of maize samples, with mean AFB1 levels of 52.4 and 16.3 µg/kg, respectively. All participants of this study reported consuming maize on a daily basis and consuming groundnuts regularly (mean consumption frequency per week: 3.2 ± 1.7). According to regression analysis, a frequency of groundnut consumption of more than four times per week, being female, and being a farmer were significant (p < 0.05) contributors to elevated AFB1-lys adduct levels in the blood. This is the first report on AFB1-lys adducts in blood samples of residents in Malawi. The results reinforce the urgent need for interventions, aiming at a reduction of aflatoxin exposure of the population.


Subject(s)
Aflatoxin B1/analysis , Aflatoxins/analysis , Albumins/analysis , Arachis/chemistry , Food Contamination/analysis , Serum/chemistry , Zea mays/chemistry , Adolescent , Adult , Enzyme-Linked Immunosorbent Assay , Female , Healthy Volunteers , Humans , Malawi , Male , Middle Aged , Rural Population , Young Adult
3.
Mycotoxin Res ; 33(2): 113-119, 2017 May.
Article in English | MEDLINE | ID: mdl-28124218

ABSTRACT

In Zambia, groundnut products (milled groundnut powder, groundnut kernels) are mostly sold in under-regulated markets. Coupled with the lack of quality enforcement in such markets, consumers may be at risk to aflatoxin exposure. However, the level of aflatoxin contamination in these products is not known. Compared to groundnut kernels, milled groundnut powder obscures visual indicators of aflatoxin contamination in groundnuts such as moldiness, discoloration, insect damage or kernel damage. A survey was therefore conducted from 2012 to 2014, to estimate and compare aflatoxin levels in these products (n = 202), purchased from markets in important groundnut growing districts and in urban areas. Samples of whole groundnut kernels (n = 163) and milled groundnut powder (n = 39) were analysed for aflatoxin B1 (AFB1) by competitive enzyme-linked immunosorbent assay (cELISA). Results showed substantial AFB1 contamination levels in both types of groundnut products with maximum AFB1 levels of 11,100 µg/kg (groundnut kernels) and 3000 µg/kg (milled groundnut powder). However, paired t test analysis showed that AFB1 contamination levels in milled groundnut powder were not always significantly higher (P > 0.05) than those in groundnut kernels. Even for products from the same vendor, AFB1 levels were not consistently higher in milled groundnut powder than in whole groundnut kernels. This suggests that vendors do not systematically sort out whole groundnut kernels of visually poor quality for milling. However, the overall contamination levels of groundnut products with AFB1 were found to be alarmingly high in all years and locations. Therefore, solutions are needed to reduce aflatoxin levels in such under-regulated markets.


Subject(s)
Aflatoxin B1/analysis , Arachis/chemistry , Food Contamination , Mycotoxins/analysis , Enzyme-Linked Immunosorbent Assay , Zambia
4.
J Food Prot ; 79(5): 795-800, 2016 05.
Article in English | MEDLINE | ID: mdl-27296427

ABSTRACT

A 3-year comprehensive analysis of aflatoxin contamination in peanut butter was conducted in Zambia, sub-Saharan Africa. The study analyzed 954 containers of 24 local and imported peanut butter brands collected from shops in Chipata, Mambwe, Petauke, Katete, and Nyimba districts and also in Lusaka from 2012 to 2014. For analysis, a sample included six containers of a single brand, from the same processing batch number and the same shop. Each container was quantitatively analyzed for aflatoxin B1 (AFB1) in six replicates by using competitive enzyme-linked immunosorbent assay; thus, aflatoxin contamination level of a given sample was derived from an average of 36 test values. Results showed that 73% of the brands tested in 2012 were contaminated with AFB1 levels >20 µg/kg and ranged up to 130 µg/kg. In 2013, 80% of the brands were contaminated with AFB1 levels >20 µg/kg and ranged up to 10,740 µg/kg. Compared with brand data from 2012 and 2013, fewer brands in 2014, i.e., 53%, had aflatoxin B1 levels >20 µg/kg and ranged up to 1,000 µg/kg. Of the eight brands tested repeatedly across the 3-year period, none consistently averaged ≤20 µg/kg. Our survey clearly demonstrates the regular occurrence of high levels of AF B1 in peanut butter in Zambia. Considering that some of the brands tested originated from neighboring countries such as Malawi, Zimbabwe, and South Africa, the current findings provide a sub-Saharan regional perspective regarding the safety of peanut butter.


Subject(s)
Aflatoxins , Arachis , Aflatoxin B1 , Food Contamination , Humans , South Africa , Zambia , Zimbabwe
5.
Electron. j. biotechnol ; 18(2): 61-67, Mar. 2015. graf, tab
Article in English | LILACS | ID: lil-745571

ABSTRACT

Background This study aimed to identify and select informative Simple Sequence Repeat (SSR) markers that may be linked to resistance to important groundnut diseases such as Early Leaf Spot, Groundnut Rosette Disease, rust and aflatoxin contamination. To this end, 799 markers were screened across 16 farmer preferred and other cultivated African groundnut varieties that are routinely used in groundnut improvement, some with known resistance traits. Results The SSR markers amplified 817 loci and were graded on a scale of 1 to 4 according to successful amplification and ease of scoring of amplified alleles. Of these, 376 markers exhibited Polymorphic Information Content (PIC) values ranging from 0.06 to 0.86, with 1476 alleles detected at an average of 3.7 alleles per locus. The remaining 423 markers were either monomorphic or did not work well. The best performing polymorphic markers were subsequently used to construct a dissimilarity matrix that indicated the relatedness of the varieties in order to aid selection of appropriately diverse parents for groundnut improvement. The closest related varieties were MGV5 and ICGV-SM 90704 and most distant were Chalimbana and 47-10. The mean dissimilarity value was 0.51, ranging from 0.34 to 0.66. Discussion Of the 376 informative markers identified in this study, 139 (37%) have previously been mapped to the Arachis genome and can now be employed in Quantitative Trait Loci (QTL) mapping and the additional 237 markers identified can be used to improve the efficiency of introgression of resistance to multiple important biotic constraints into farmer-preferred varieties of Sub-Saharan Africa.


Subject(s)
Arachis/genetics , Polymorphism, Genetic , Microsatellite Repeats , Disease Resistance/genetics , Genetic Variation , DNA/isolation & purification , Africa , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...