Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 16(816): eade0326, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38113337

ABSTRACT

Innate immune responses to coronavirus infections are highly cell specific. Tissue-resident macrophages, which are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients but are inconsistently infected in vitro, exert critical but conflicting effects by secreting both antiviral type I interferons (IFNs) and tissue-damaging inflammatory cytokines. Steroids, the only class of host-targeting drugs approved for the treatment of coronavirus disease 2019 (COVID-19), indiscriminately suppress both responses, possibly impairing viral clearance. Here, we established in vitro cell culture systems that enabled us to separately investigate the cell-intrinsic and cell-extrinsic proinflammatory and antiviral activities of mouse macrophages infected with the prototypical murine coronavirus MHV-A59. We showed that the nuclear factor κB-dependent inflammatory response to viral infection was selectively inhibited by loss of the lysine demethylase LSD1, which was previously implicated in innate immune responses to cancer, with negligible effects on the antiviral IFN response. LSD1 ablation also enhanced an IFN-independent antiviral response, blocking viral egress through the lysosomal pathway. The macrophage-intrinsic antiviral and anti-inflammatory activity of Lsd1 inhibition was confirmed in vitro and in a humanized mouse model of SARS-CoV-2 infection. These results suggest that LSD1 controls innate immune responses against coronaviruses at multiple levels and provide a mechanistic rationale for potentially repurposing LSD1 inhibitors for COVID-19 treatment.


Subject(s)
COVID-19 , Lysine , Animals , Humans , Mice , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cytokines/metabolism , SARS-CoV-2/metabolism
2.
Nutrients ; 14(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35807850

ABSTRACT

Metabolic regulation of cancer cell growth via AMP-activated protein kinase (AMPK) activation is a widely studied strategy for cancer treatment, including leukemias. Recent notions that naturally occurring compounds might have AMPK activity led to the search for nutraceuticals with potential AMPK-stimulating activity. We found that hydroxycitric acid (HCA), a natural, safe bioactive from the plant Garcinia gummi-gutta (cambogia), has potent AMPK activity in chronic myelogenous leukemia (CML) cell line K562. HCA is a known competitive inhibitor of ATP citrate lyase (ACLY) and is widely used as a weight loss inducer. We found that HCA was able to inhibit the growth of K562 cells in in vitro and in vivo xenograft models. At the mechanistic level, we identified a direct interaction between AMPK and ACLY that seems to be sensitive to HCA treatment. Additionally, HCA treatment resulted in the co-activation of AMPK and the mammalian target of rapamycin (mTOR) pathways. Moreover, we found an enhanced unfolded protein response as observed by activation of the eIF2α/ATF4 pathway that could explain the induction of cell cycle arrest at the G2/M phase and DNA fragmentation upon HCA treatment in K562 cells. Overall, these findings suggest HCA as a nutraceutical approach for the treatment of CMLs.


Subject(s)
AMP-Activated Protein Kinases , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , AMP-Activated Protein Kinases/metabolism , Citrates/pharmacology , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , TOR Serine-Threonine Kinases
3.
Nat Biotechnol ; 40(2): 235-244, 2022 02.
Article in English | MEDLINE | ID: mdl-34635836

ABSTRACT

Recent efforts have succeeded in surveying open chromatin at the single-cell level, but high-throughput, single-cell assessment of heterochromatin and its underlying genomic determinants remains challenging. We engineered a hybrid transposase including the chromodomain (CD) of the heterochromatin protein-1α (HP-1α), which is involved in heterochromatin assembly and maintenance through its binding to trimethylation of the lysine 9 on histone 3 (H3K9me3), and developed a single-cell method, single-cell genome and epigenome by transposases sequencing (scGET-seq), that, unlike single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), comprehensively probes both open and closed chromatin and concomitantly records the underlying genomic sequences. We tested scGET-seq in cancer-derived organoids and human-derived xenograft (PDX) models and identified genetic events and plasticity-driven mechanisms contributing to cancer drug resistance. Next, building upon the differential enrichment of closed and open chromatin, we devised a method, Chromatin Velocity, that identifies the trajectories of epigenetic modifications at the single-cell level. Chromatin Velocity uncovered paths of epigenetic reorganization during stem cell reprogramming and identified key transcription factors driving these developmental processes. scGET-seq reveals the dynamics of genomic and epigenetic landscapes underlying any cellular processes.


Subject(s)
Euchromatin , Heterochromatin , Chromatin/genetics , Epigenesis, Genetic/genetics , Euchromatin/genetics , Heterochromatin/genetics , Humans , Transposases/genetics
4.
Nat Commun ; 12(1): 2070, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824334

ABSTRACT

The Drosophila tumour necrosis factor (TNF) ligand-receptor system consists of a unique ligand, Eiger (Egr), and two receptors, Grindelwald (Grnd) and Wengen (Wgn), and therefore provides a simple system for exploring the interplay between ligand and receptors, and the requirement for Grnd and Wgn in TNF/Egr-mediated processes. Here, we report the crystallographic structure of the extracellular domain (ECD) of Grnd in complex with Egr, a high-affinity hetero-hexameric assembly reminiscent of human TNF:TNFR complexes. We show that ectopic expression of Egr results in internalisation of Egr:Grnd complexes in vesicles, a step preceding and strictly required for Egr-induced apoptosis. We further demonstrate that Wgn binds Egr with much reduced affinity and is localised in intracellular vesicles that are distinct from those containing Egr:Grnd complexes. Altogether, our data provide insight into ligand-mediated activation of Grnd and suggest that distinct affinities of TNF ligands for their receptors promote different and non-redundant cellular functions.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Amino Acid Sequence , Animals , Apoptosis , Cytoplasmic Vesicles/metabolism , Drosophila Proteins/chemistry , Endocytosis , Imaginal Discs/cytology , Imaginal Discs/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Binding , Protein Domains , Protein Interaction Mapping
5.
J Clin Med ; 9(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019628

ABSTRACT

Although antibody response to SARS-CoV-2 can be detected early during the infection, several outstanding questions remain to be addressed regarding the magnitude and persistence of antibody titer against different viral proteins and their correlation with the strength of the immune response. An ELISA assay has been developed by expressing and purifying the recombinant SARS-CoV-2 Spike Receptor Binding Domain (RBD), Soluble Ectodomain (Spike), and full length Nucleocapsid protein (N). Sera from healthcare workers affected by non-severe COVID-19 were longitudinally collected over four weeks, and compared to sera from patients hospitalized in Intensive Care Units (ICU) and SARS-CoV-2-negative subjects for the presence of IgM, IgG and IgA antibodies as well as soluble pro-inflammatory mediators in the sera. Non-hospitalized subjects showed lower antibody titers and blood pro-inflammatory cytokine profiles as compared to patients in Intensive Care Units (ICU), irrespective of the antibodies tested. Noteworthy, in non-severe COVID-19 infections, antibody titers against RBD and Spike, but not against the N protein, as well as pro-inflammatory cytokines decreased within a month after viral clearance. Thus, rapid decline in antibody titers and in pro-inflammatory cytokines may be a common feature of non-severe SARS-CoV-2 infection, suggesting that antibody-mediated protection against re-infection with SARS-CoV-2 is of short duration. These results suggest caution in using serological testing to estimate the prevalence of SARS-CoV-2 infection in the general population.

6.
Nat Commun ; 10(1): 2208, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31101817

ABSTRACT

Cortical force generators connect epithelial polarity sites with astral microtubules, allowing dynein movement to orient the mitotic spindle as astral microtubules depolymerize. Complexes of the LGN and NuMA proteins, fundamental components of force generators, are recruited to the cortex by Gαi-subunits of heterotrimeric G-proteins. They associate with dynein/dynactin and activate the motor activity pulling on astral microtubules. The architecture of cortical force generators is unknown. Here we report the crystal structure of NuMA:LGN hetero-hexamers, and unveil their role in promoting the assembly of active cortical dynein/dynactin motors that are required in orchestrating oriented divisions in polarized cells. Our work elucidates the basis for the structural organization of essential spindle orientation motors.


Subject(s)
Antigens, Nuclear/metabolism , Cell Polarity , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Spindle Apparatus/metabolism , Antigens, Nuclear/chemistry , Antigens, Nuclear/genetics , Antigens, Nuclear/isolation & purification , Caco-2 Cells , Cell Cycle Proteins , Crystallography, X-Ray , Dynactin Complex/metabolism , Dyneins/metabolism , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/isolation & purification , Microtubules/metabolism , Nuclear Matrix-Associated Proteins/chemistry , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/isolation & purification , Protein Binding/physiology , Protein Multimerization/physiology , RNA, Small Interfering/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
7.
J Cell Biol ; 190(5): 835-52, 2010 Sep 06.
Article in English | MEDLINE | ID: mdl-20819937

ABSTRACT

Kinetochores are nucleoprotein assemblies responsible for the attachment of chromosomes to spindle microtubules during mitosis. The KMN network, a crucial constituent of the outer kinetochore, creates an interface that connects microtubules to centromeric chromatin. The NDC80, MIS12, and KNL1 complexes form the core of the KMN network. We recently reported the structural organization of the human NDC80 complex. In this study, we extend our analysis to the human MIS12 complex and show that it has an elongated structure with a long axis of approximately 22 nm. Through biochemical analysis, cross-linking-based methods, and negative-stain electron microscopy, we investigated the reciprocal organization of the subunits of the MIS12 complex and their contacts with the rest of the KMN network. A highlight of our findings is the identification of the NSL1 subunit as a scaffold supporting interactions of the MIS12 complex with the NDC80 and KNL1 complexes. Our analysis has important implications for understanding kinetochore organization in different organisms.


Subject(s)
Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Amino Acid Sequence , Chromosomes/metabolism , Escherichia coli/genetics , HeLa Cells , Humans , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/ultrastructure , Microtubules/genetics , Microtubules/metabolism , Mitosis , Molecular Sequence Data , Molecular Weight , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Protein Subunits/metabolism , Recombinant Fusion Proteins/metabolism
8.
J Biol Chem ; 280(32): 29088-95, 2005 Aug 12.
Article in English | MEDLINE | ID: mdl-15961401

ABSTRACT

The Ndc80 complex is a constituent of the outer plate of the kinetochore and plays a critical role in establishing the stable kinetochore-microtubule interactions required for chromosome segregation in mitosis. The Ndc80 complex is evolutionarily conserved and contains the four subunits Spc24, Spc25, Nuf2, and Ndc80 (whose human homologue is called Hec1). All four subunits are predicted to contain globular domains and extensive coiled coil regions. To gain an insight into the organization of the human Ndc80 complex, we reconstituted it using recombinant methods. The hydrodynamic properties of the recombinant Ndc80 complex are identical to those of the endogenous HeLa cell complex and are consistent with a 1:1:1:1 stoichiometry of the four subunits and a very elongated shape. Two tight Hec1-Nuf2 and Spc24-Spc25 subcomplexes, each stabilized by a parallel heterodimeric coiled coil, maintain this organization. These subcomplexes tetramerize via an interaction of the C- and N-terminal portions of the Hec1-Nuf2 and Spc24-Spc25 coiled coils, respectively. The recombinant complex displays normal kinetochore localization upon injection in HeLa cells and is therefore a faithful copy of the endogenous Ndc80 complex.


Subject(s)
Kinetochores/metabolism , Nuclear Proteins/chemistry , Cell Cycle Proteins , Chromatography , Cloning, Molecular , Cytoskeletal Proteins , DNA, Complementary/metabolism , Dimerization , Electrophoresis, Polyacrylamide Gel , Glutathione Transferase/metabolism , HeLa Cells , Humans , Microscopy, Atomic Force , Microtubule-Associated Proteins/chemistry , Mitosis , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Recombinant Proteins/chemistry
9.
Neuron ; 44(5): 809-21, 2004 Dec 02.
Article in English | MEDLINE | ID: mdl-15572112

ABSTRACT

Mutations in the LIS1 gene cause lissencephaly, a human neuronal migration disorder. LIS1 binds dynein and the dynein-associated proteins Nde1 (formerly known as NudE), Ndel1 (formerly known as NUDEL), and CLIP-170, as well as the catalytic alpha dimers of brain cytosolic platelet activating factor acetylhydrolase (PAF-AH). The mechanism coupling the two diverse regulatory pathways remains unknown. We report the structure of LIS1 in complex with the alpha2/alpha2 PAF-AH homodimer. One LIS1 homodimer binds symmetrically to one alpha2/alpha2 homodimer via the highly conserved top faces of the LIS1 beta propellers. The same surface of LIS1 contains sites of mutations causing lissencephaly and overlaps with a putative dynein binding surface. Ndel1 competes with the alpha2/alpha2 homodimer for LIS1, but the interaction is complex and requires both the N- and C-terminal domains of LIS1. Our data suggest that the LIS1 molecule undergoes major conformational rearrangement when switching from a complex with the acetylhydrolase to the one with Ndel1.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Dyneins/metabolism , Microtubule-Associated Proteins/metabolism , Platelet Activating Factor/metabolism , Signal Transduction/physiology , 1-Alkyl-2-acetylglycerophosphocholine Esterase/chemistry , Amino Acid Sequence , Animals , Binding, Competitive , Carrier Proteins/metabolism , Cell Line , Humans , Mice , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Molecular Conformation , Molecular Sequence Data , Protein Structure, Tertiary , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...