Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 13(4): e14260, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33954071

ABSTRACT

Medical education is constantly evolving, especially as students were forced to study from home during the coronavirus disease 2019 (COVID-19) pandemic, and new technologies have driven the rapid development of supplemental online educational resources. In this study, we examine if 360° videos can promote increased engagement over standard two-dimensional (2D) videos among medical students learning anatomy. We enrolled 39 fourth-year medical students to watch two four-minute videos of anatomy lab exercises in a 360° three-dimensional format using an immersive headset or in a 2D format on a laptop computer. Every two minutes, students were asked to rate their engagement from 0-100. Following the videos, they reported their degree of agreement with 14 statements related to engagement, practicality, and interest in the technology. While watching the videos, the average engagement reported by the 360° video group was higher at each time point than the engagement reported by the two-dimensional group. Further, the engagement remained high in the 360° group through the six- and eight-minute timepoints. In the post-video survey, the 360° group reported a statistically significantly higher average engagement in seven of eight measures on the assessment. A 360° video was rated as more practical and interesting than a two-dimensional video. No significant difference existed in the perceived ease of learning. Overall, the use of 360° video may improve engagement for short videos used in medical education. However, developing a better understanding of its impact on learning outcomes will be critical for determining the overall value and effectiveness of this tool.

2.
Med Ref Serv Q ; 35(1): 1-15, 2016.
Article in English | MEDLINE | ID: mdl-26794192

ABSTRACT

User testing, a method of assessing website usability, can be a cost-effective and easily administered process to collect information about a website's effectiveness. A user experience (UX) team at an academic health sciences library has employed user testing for over three years to help refine the library's home page. Test methodology used in-person testers using the "think aloud" method to complete tasks on the home page. Review of test results revealed problem areas of the design and redesign; further testing was effective in refining the page. User testing has proved to be a valuable method to engage users and provide feedback to continually improve the library's home page.


Subject(s)
Internet , Libraries, Medical , User-Computer Interface , Consumer Behavior , Program Evaluation
3.
J Biomech Eng ; 131(8): 081007, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19604019

ABSTRACT

The traditional method of establishing the stiffness matrix associated with an intervertebral joint is valid only for infinitesimal rotations, whereas the rotations featured in spinal motion are often finite. In the present paper, a new formulation of this stiffness matrix is presented, which is valid for finite rotations. This formulation uses Euler angles to parametrize the rotation, an associated basis, which is known as the dual Euler basis, to describe the moments, and it enables a characterization of the nonconservative nature of the joint caused by energy loss in the poroviscoelastic disk and ligamentous support structure. As an application of the formulation, the stiffness matrix of a motion segment is experimentally determined for the case of an intact intervertebral disk and compared with the matrices associated with the same segment after the insertion of a total disk replacement system. In this manner, the matrix is used to quantify the changes in the intervertebral kinetics associated with total disk replacements. As a result, this paper presents the first such characterization of the kinetics of a total disk replacement.


Subject(s)
Intervertebral Disc/physiopathology , Intervertebral Disc/surgery , Joint Prosthesis , Models, Biological , Zygapophyseal Joint/physiopathology , Zygapophyseal Joint/surgery , Computer Simulation , Elastic Modulus , Humans , Torque , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...