Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Cell Commun Signal ; 11(1): 25-37, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27761803

ABSTRACT

Mammalian palatogenesis is a complex process involving a temporally and spatially regulated myriad of factors. Together these factors control the 3 vital processes of proliferation, elevation and fusion of the developing palate. In this study, we show for the first time the unequivocally vital role of CCN2 in development of the mammalian palate. We utilized CCN2 knockout (KO) mice and cranial neural crest derived mesenchymal cells from these CCN2 KO mice to investigate the 3 processes crucial to normal palatogenesis. Similar to previously published reports, the absence of CCN2 inhibits proliferation of cells in the palate specifically at the G1/S transition. Absence of CCN2 also inhibited palatal shelf elevation from the vertical to horizontal position. CCN2 KO mesenchymal cells demonstrated deficiencies in adhesion and spreading owing to an inability to activate Rac1 and RhoA. On the contrary, CCN2 KO mesenchymal cells exhibited increased rates of migration compared to WT cells. The addition of exogenous CCN2 to KO mesenchymal cells restored their ability to spread normally on fibronectin. Finally, utilizing an organ culture model we show that the palatal shelves of the CCN2 KO mice demonstrate an inability to fuse when apposed. Together, these data signify that CCN2 plays an indispensible role in normal development of the mammalian palate and warrants additional studies to determine the precise mechanism(s) responsible for these effects.

2.
Elife ; 2: e00291, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23426999

ABSTRACT

UNC93B1, a multipass transmembrane protein required for TLR3, TLR7, TLR9, TLR11, TLR12, and TLR13 function, controls trafficking of TLRs from the endoplasmic reticulum (ER) to endolysosomes. The mechanisms by which UNC93B1 mediates these regulatory effects remain unclear. Here, we demonstrate that UNC93B1 enters the secretory pathway and directly controls the packaging of TLRs into COPII vesicles that bud from the ER. Unlike other COPII loading factors, UNC93B1 remains associated with the TLRs through post-Golgi sorting steps. Unexpectedly, these steps are different among endosomal TLRs. TLR9 requires UNC93B1-mediated recruitment of adaptor protein complex 2 (AP-2) for delivery to endolysosomes while TLR7, TLR11, TLR12, and TLR13 utilize alternative trafficking pathways. Thus, our study describes a mechanism for differential sorting of endosomal TLRs by UNC93B1, which may explain the distinct roles played by these receptors in certain autoimmune diseases.DOI:http://dx.doi.org/10.7554/eLife.00291.001.


Subject(s)
Endosomes/metabolism , Membrane Transport Proteins/metabolism , Toll-Like Receptors/metabolism , Adaptor Protein Complex 2/metabolism , Animals , COP-Coated Vesicles/metabolism , COS Cells , Chlorocebus aethiops , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Membrane Transport Proteins/genetics , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Protein Transport , RNA Interference , Toll-Like Receptors/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL