Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(21): 29930-29937, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684248

ABSTRACT

AlGaN-based vertical type high power ultraviolet-C light emitting diodes (UV-C LEDs), which have a Ga-face n-contact structure, were fabricated on a LED epilayer transferred to a carrier wafer through a laser lift-off (LLO) process. A significant light extraction enhancement of the vertical chip by using a highly reflective ITO/Al p-type electrode is demonstrated, along with surface roughening. A GaN-free LED epi structure is employed to prevent light absorption in the UV-C wavelength region. The vertical chip with the ITO/Al reflector and n-AlGaN surface roughening exhibited a high light output power of 104.4mW with a peak wavelength of 277.6nm at an injection current of 350mA. Comparing the device characteristics of the vertical chip and the flip chip showed that the light output power of the vertical chip was 1.31 times higher than that of the flip chip at 350mA. In particular, with the high power vertical type UV-C LED, a maximum light output power of 630mW could be achieved at a current of 3.5A, and this is mainly attributed to efficient heat dissipation through a metal substrate and the resulting relatively lower junction temperature of the vertical chip.

2.
Opt Express ; 26(9): 11194-11200, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29716043

ABSTRACT

We investigated the optical and electrical properties of red AlGaInP light-emitting diodes (LEDs) as functions of chip size, p-cladding layer thickness, and the number of multi-quantum wells (MQWs). External quantum efficiency (EQE) decreased with decreasing chip size. The ideality factor gradually increased from 1.47 to 1.95 as the chip size decreased from 350 µm to 15 µm. This indicates that the smaller LEDs experienced larger carrier loss due to Shockley-Read-Hall nonradiative recombination at sidewall defects. S parameter, defined as ∂lnL/∂lnI, increased with decreasing chip size. Simulations and experimental results showed that smaller LEDs with 5 pairs of MQWs had over 30% higher IQE at 5 A/cm2 than the LED with 20 pairs of MQWs. These results show that the optimization of the number of QWs is needed to obtain maximum EQE of micro-LEDs.

3.
Opt Express ; 26(5): 5111-5117, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29529718

ABSTRACT

We demonstrated the growth of crack-free high-quality GaN-based UV vertical LEDs (VLEDs) (λ = 365 nm) on 6-inch sapphire substrates by using an ex-situ sputtered AlN nucleation layer (NL) and compared their performance with that of UV VLEDs with an in situ low temperature (LT) AlGaN NL. The X-ray diffraction (XRD) results showed that the ex-situ AlN sample contained lower densities of screw-type and edge-type threading dislocations than the in situ AlGaN NL sample. The micro-Raman results revealed that the ex-situ AlN sample was under more compressive stress than the in situ AlGaN sample. As the current was increased, the electroluminescence peaks of both of the samples blue-shifted, reached a minimum wavelength at 1000 mA, and then slightly red-shifted. Packaged VLEDs with the ex-situ AlN NL yielded 6.5% higher light output power at 500 mA than that with the in situ AlGaN NL. The maximum EQEs of the VLED with the in situ AlGaN and ex-situ AlN NLs were 43.7% and 48.2%, respectively. Based on the XRD and Raman results, the improved light output power of the ex-situ AlN sample is attributed to the lower density of TDs.

4.
Opt Express ; 23(16): 20340-9, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26367889

ABSTRACT

We study light-extraction efficiency (LEE) of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) using flip-chip (FC) devices with varied thickness in remaining sapphire substrate by experimental output power measurement and computational methods using 3-dimensional finite-difference time-domain (3D-FDTD) and Monte Carlo ray-tracing simulations. Light-output power of DUV-FCLEDs compared at a current of 20 mA increases with thicker sapphire, showing higher LEE for an LED with 250-µm-thick sapphire by ~39% than that with 100-µm-thick sapphire. In contrast, LEEs of visible FCLEDs show only marginal improvement with increasing sapphire thickness, that is, ~6% improvement for an LED with 250-µm-thick sapphire. 3D-FDTD simulation reveals a mechanism of enhanced light extraction with various sidewall roughness and thickness in sapphire substrates. Ray tracing simulation examines the light propagation behavior of DUV-FCLED structures. The enhanced output power and higher LEE strongly depends on the sidewall roughness of the sapphire substrate rather than thickness itself. The thickness starts playing a role only when the sapphire sidewalls become rough. The roughened surface of sapphire sidewall during chip-separation process is critical for TM-polarized photons from AlGaN quantum wells to escape in lateral directions before they are absorbed by p-GaN and Au-metal. Furthermore, the ray tracing results show a reasonably good agreement with the experimental result of the LEE.

5.
Sci Rep ; 5: 9717, 2015 May 26.
Article in English | MEDLINE | ID: mdl-26010378

ABSTRACT

This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode.

6.
Opt Express ; 18(11): 11025-32, 2010 May 24.
Article in English | MEDLINE | ID: mdl-20588958

ABSTRACT

We demonstrate a highly-efficient, large-area (1x1 mm2) GaN slab light-emitting diode using a vertically directional emitter produced from constructive interference. The vertical radiation can be coupled effectively into leaky modes from the beginning and thus a high-extraction efficiency can be expected with reduced material absorption. The far-field measurements show that the desired vertical emission profiles are obtained by varying the thickness of the dielectric layer between the emitter and bottom silver mirror. With the combination of a light extractor of a randomly textured surface, the output power was increased approximately 1.4 fold compared to a non-patterned device at a standard current of 350 mA without electrical degradation.


Subject(s)
Gallium/chemistry , Lighting/instrumentation , Semiconductors , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL