Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(18): 13135-13147, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37724542

ABSTRACT

A series of dihydropyridinone (DHP) compounds was prepared and evaluated for MGAT2 activity. The efforts led to the identification of novel tetrazolones with potent MGAT2 inhibitory activity and favorable in vitro profiles. Further tests of select analogues in mouse models revealed significant reduction in food intake and body weight. Subsequent studies in MGAT2 knockout mice with the lead candidate 12 (BMS-986172) showed on-target- and mechanism-based pharmacology. Moreover, its favorable pharmacokinetic (PK) profile and the lack of species variability in the glucuronidation potential resulted in a greater confidence level in the projection of a low dose for achieving targeted efficacious exposures in humans. Consistent with these projections, PK data from a phase 1 trial confirmed that targeted efficacious exposures could be achieved at a low dose in humans, which supported compound 12 as our second and potentially superior development candidate for the treatment of various metabolic disorders.


Subject(s)
Metabolic Diseases , Pyridones , Animals , Humans , Mice , Body Weight , Metabolic Diseases/drug therapy , Pyridones/chemistry , Pyridones/pharmacology , N-Acetylglucosaminyltransferases/antagonists & inhibitors
2.
Bioorg Med Chem Lett ; 91: 129362, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37295614

ABSTRACT

Inhibition of monoacylglycerol transferase 2 (MGAT2) has recently emerged as a potential therapeutic strategy for the treatment of metabolic diseases such as obesity, diabetes and non-alcoholic steatohepatitis (NASH). Metabolism studies with our clinical lead (1) suggested variability in in vitro glucuronidation rates in liver microsomes across species, which made projection of human doses challenging. In addition, the observation of deconjugation of the C3-C4 double bond in the dihydropyridinone ring of 1 in solution had the potential to complicate its clinical development. This report describes our lead optimization efforts in a novel pyridinone series, exemplified by compound 33, which successfully addressed both of these potential issues.


Subject(s)
Metabolic Diseases , Monoglycerides , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/chemistry , Obesity/drug therapy , Metabolic Diseases/drug therapy
3.
J Med Chem ; 64(19): 14773-14792, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34613725

ABSTRACT

MGAT2 inhibition is a potential therapeutic approach for the treatment of metabolic disorders. High-throughput screening of the BMS internal compound collection identified the aryl dihydropyridinone compound 1 (hMGAT2 IC50 = 175 nM) as a hit. Compound 1 had moderate potency against human MGAT2, was inactive vs mouse MGAT2 and had poor microsomal metabolic stability. A novel chemistry route was developed to synthesize aryl dihydropyridinone analogs to explore structure-activity relationship around this hit, leading to the discovery of potent and selective MGAT2 inhibitors 21f, 21s, and 28e that are stable to liver microsomal metabolism. After triaging out 21f due to its inferior in vivo potency, pharmacokinetics, and structure-based liabilities and tetrazole 28e due to its inferior channel liability profile, 21s (BMS-963272) was selected as the clinical candidate following demonstration of on-target weight loss efficacy in the diet-induced obese mouse model and an acceptable safety and tolerability profile in multiple preclinical species.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Metabolic Diseases/drug therapy , N-Acetylglucosaminyltransferases/antagonists & inhibitors , Animals , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Humans , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 25(14): 2793-9, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26022839

ABSTRACT

Our investigation of the structure-activity and structure-liability relationships for dihydropyrrolopyrazol-6-one MCHR1 antagonists revealed that off-rate characteristics, inferred from potencies in a FLIPR assay following a 2 h incubation, can impact in vivo efficacy. The in vitro and exposure profiles of dihydropyrrolopyrazol-6-ones 1b and 1e were comparable to that of the thienopyrimidinone counterparts 41 and 43 except for a much faster MCHR1 apparent off-rate. The greatly diminished dihydropyrrolopyrazol-6-one anti-obesity response may be the consequence of this rapid off-rate.


Subject(s)
Anti-Obesity Agents/chemistry , Pyrazoles/chemistry , Receptors, Somatostatin/antagonists & inhibitors , Animals , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Half-Life , Humans , Obesity/drug therapy , Protein Binding , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Rats , Rats, Sprague-Dawley , Receptors, Somatostatin/metabolism , Structure-Activity Relationship , Weight Loss/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...