Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(1): eadi4919, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38181083

ABSTRACT

Cell-based therapies hold promise for many chronic conditions; however, the continued need for immunosuppression along with challenges in replacing cells to improve durability or retrieving cells for safety are major obstacles. We subcutaneously implanted a device engineered to exploit the innate transcapillary hydrostatic and colloid osmotic pressure generating ultrafiltrate to mimic interstitium. Long-term stable accumulation of ultrafiltrate was achieved in both rodents and nonhuman primates (NHPs) that was chemically similar to serum and achieved capillary blood oxygen concentration. The majority of adult pig islet grafts transplanted in non-immunosuppressed NHPs resulted in xenograft survival >100 days. Stable cytokine levels, normal neutrophil to lymphocyte ratio, and a lack of immune cell infiltration demonstrated successful immunoprotection and averted typical systemic changes related to xenograft transplant, especially inflammation. This approach eliminates the need for immunosuppression and permits percutaneous access for loading, reloading, biopsy, and recovery to de-risk the use of "unlimited" xenogeneic cell sources to realize widespread clinical translation of cell-based therapies.


Subject(s)
Immunosuppression Therapy , Primates , Adult , Animals , Humans , Swine , Heterografts , Transplantation, Heterologous , Biopsy
3.
J Am Vet Med Assoc ; 259(S2): 1-4, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35560122

ABSTRACT

In collaboration with the American College of Veterinary Pathologists.


Subject(s)
Pathology, Veterinary , Veterinarians , Animals , Humans , United States
4.
Am J Transplant ; 22(3): 745-760, 2022 03.
Article in English | MEDLINE | ID: mdl-34704345

ABSTRACT

A safe, efficacious, and clinically applicable immunosuppressive regimen is necessary for islet xenotransplantation to become a viable treatment option for diabetes. We performed intraportal transplants of wild-type adult porcine islets in 25 streptozotocin-diabetic cynomolgus monkeys. Islet engraftment was good in 21, partial in 3, and poor in 1 recipient. Median xenograft survival was 25 days with rapamycin and CTLA4Ig immunosuppression. Adding basiliximab induction and maintenance tacrolimus to the base regimen significantly extended median graft survival to 147 days (p < .0001), with three animals maintaining insulin-free xenograft survival for 265, 282, and 288 days. We demonstrate that this regimen suppresses non-Gal anti-pig antibody responses, circulating effector memory T cell expansion, effector function, and infiltration of the graft. However, a chronic systemic inflammatory state manifested in the majority of recipients with long-term graft survival indicated by increased neutrophil to lymphocyte ratio, IL-6, MCP-1, CD40, and CRP expression. This suggests that this immunosuppression regimen fails to regulate innate immunity and resulting inflammation is significantly associated with increased incidence and severity of adverse events making this regimen unacceptable for translation. Additional studies are needed to optimize a maintenance regimen for regulating the innate inflammatory response.


Subject(s)
Diabetes Mellitus , Islets of Langerhans Transplantation , Animals , Graft Rejection/etiology , Graft Survival , Heterografts , Humans , Immunosuppression Therapy , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Inflammation/etiology , Islets of Langerhans Transplantation/methods , Macaca fascicularis , Swine , Transplantation, Heterologous/methods
5.
iScience ; 24(12): 103421, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34877488

ABSTRACT

The obesity epidemic significantly contributes to overall morbidity and mortality. Bariatric surgery is the gold standard treatment for obesity and metabolic dysfunction, yet the mechanisms by which it exerts metabolic benefit remain unclear. Here, we demonstrate a model of vertical sleeve gastrectomy (VSG) in nonhuman primates (NHP) that mimics the complexity and outcomes in humans. We also show that VSG confers weight loss and durable metabolic benefit, where equivalent caloric intake in shams resulted in significant weight gain following surgery. Furthermore, we show that VSG is associated with early, weight-independent increases in bile acids, short-chain fatty acids, and reduced visceral adipose tissue (VAT) inflammation with a polarization of VAT-resident immunocytes toward highly regulatory myeloid cells and Tregs. These data demonstrate that this strongly translational NHP model can be used to interrogate factors driving successful intervention to unravel the interplay between physiologic systems and improve therapies for obesity and metabolic syndrome.

6.
Appl Environ Microbiol ; 87(23): e0147121, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34550758

ABSTRACT

Hemorrhagic pneumonia (HP) is a rare but highly lethal disease, mainly of dogs and cats, caused by hemolytic Escherichia coli strains that contain cnf1 (encoding cytotoxic necrotizing factor 1). After encountering fatal HP in two dogs, we used contemporary molecular methods, including multilocus sequence typing and whole-genome sequencing, to compare the corresponding case isolates with published HP clinical isolates and newly obtained fecal E. coli isolates from 20 humans and animals in the index HP case household. We also compared the aggregated HP clinical isolates, which represented 13 discrete strains, by pulsotype with a large, private pulsotype library of diverse-source E. coli. The HP clinical isolates represented a narrow range of phylogenetic group B2 lineages (mainly sequence types 12 and 127), O types (mainly O4 and O6), and H types (mainly H5 and H31), but diverse fimH alleles (type-1 fimbriae adhesin). Their extensive, highly conserved virulence genotypes, which qualified as extraintestinal pathogenic E. coli (ExPEC), encoded diverse adhesins, toxins, iron uptake systems, and protectins. Household surveillance identified multiple HP-like fecal strains, plus abundant between-host strain sharing, including of the household's index HP strain. The pulsotype library search identified, for five HP clinical strains, same-pulsotype human and animal fecal and clinical (predominantly urine) isolates, from diverse locales and time periods. Thus, E. coli strains that cause HP derive from a narrow range of ExPEC lineages within phylogroup B2, contain multiple virulence genes other than cnf1, are shared extensively between hosts, and likely function in nature mainly as intestinal colonizers and uropathogens. IMPORTANCE This study clarifies the clonal background and extensive virulence genotypes of the E. coli strains that cause hemorrhagic pneumonia in domestic animals (mainly dogs and cats), shows that such strains circulate among animals and humans, identifies a substantial intestinal colonization component to their lifestyle, and extends their known clinical manifestations to include bacteremia and urinary tract infection. The findings place these strains better into context vis-à-vis current understandings of E. coli phylogeny, ecology, and pathogenesis; identify questions for future research; and may prove relevant for surveillance and prevention efforts.


Subject(s)
Cat Diseases , Dog Diseases , Escherichia coli/pathogenicity , Pneumonia, Bacterial , Animals , Cat Diseases/microbiology , Cats , Dog Diseases/microbiology , Dogs , Escherichia coli/genetics , Phylogeny , Pneumonia, Bacterial/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...