Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biochimie ; 225: 168-175, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823620

ABSTRACT

Listeria monocytogenes is a human opportunistic foodborne pathogen that produces life-threatening infections with a high mortality rate. The control of Listeria in the food production environment and effective clinical management of human listeriosis are challenging due to the emergence of antibiotic resistance. Hence we evaluate the in vitro anti-Listeria activity of two synthetic cruzioseptins reproducing their natural sequences CZS-9, and CZS-12, and one engineered sequence based on CZS-1, named [K4K15]CZS-1. The assessment of the in vitro potential of cruzioseptins, highlighted the promising antibacterial effect of [K4K15]CZS-1 in very low concentrations (0.91 µM) and its thermal stability at high-temperature conditions, is compatible with the food industry. Microscopic and metabolomic analyses suggest cruzioseptin induces anti-Listeria bioactivity through membrane disruption and changes in the intracellular metabolome. We also report that [K4K15]CZS-1 is not resistant to peptidases/proteases emphasizing a key advantage for their use as a food preservative. However, there is a need for further structural and functional optimisations for the potential clinical application as an antibiotic. In conclusion, [K4K15]CZS-1 stand out as membrane-active peptides with the ability to induce shifts in the bacteria metabolome and inspire the development of strategies for the prevention of L. monocytogenes emergence and dissemination.

2.
Sci Rep ; 13(1): 13617, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604855

ABSTRACT

Escin is a mixture of over 30 glycosylated triterpenoid (saponin) structures, extracted from the dried fruit of horse chestnuts. Escin is currently used as an anti-inflammatory, and has potential applications in the treatment of arthritis and cancer. Engineered yeast would enable production of specific bioactive components of escin at industrial scale, however many saponins have been shown to be toxic to yeast. Here we report that a Saccharomyces cerevisiae strain specifically lacking the sterol C-5 desaturase gene ERG3, exhibits striking enhanced tolerance to escin treatment. Transcriptome analyses, as well as pre-mixing of escin with sterols, support the hypothesis that escin interacts directly with ergosterol, but not as strongly with the altered sterols present in erg3Δ. A diverse range of saponins are of commercial interest, and this research highlights the value of screening lipidome mutants to identify appropriate hosts for engineering the industrial production of saponins.


Subject(s)
Saccharomyces cerevisiae , Saponins , Saccharomyces cerevisiae/genetics , Escin , Saponins/pharmacology , Sterols/pharmacology , Anti-Inflammatory Agents , Fatty Acid Desaturases
3.
Nat Prod Rep ; 40(2): 228-236, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36341536

ABSTRACT

Streptomyces bacteria are a major microbial source of natural products, which are encoded within so-called biosynthetic gene clusters (BGCs). This highlight discusses the emergence of native Streptomyces cell-free systems as a new tool to accelerate the study of the fundamental chemistry and biology of natural product biosynthesis from these bacteria. Cell-free systems provide a prototyping platform to study plug-and-play reactions in microscale reactions. So far, Streptomyces cell-free systems have been used to rapidly characterise gene expression regulation, access secondary metabolite biosynthetic enzymes, and catalyse cell-free transcription, translation, and biosynthesis of example natural products. With further progress, we anticipate the development of more complex systems to complement existing experimental tools for the discovery and engineering of natural product biosynthesis from Streptomyces and related high G + C (%) bacteria.


Subject(s)
Biological Products , Streptomyces , Streptomyces/genetics , Cell-Free System/metabolism , Biological Products/metabolism , Multigene Family
4.
Front Bioeng Biotechnol ; 10: 992708, 2022.
Article in English | MEDLINE | ID: mdl-36185432

ABSTRACT

Cell-free gene expression (CFE) systems are an attractive tool for engineering within synthetic biology and for industrial production of high-value recombinant proteins. CFE reactions require a cell extract, energy system, amino acids, and DNA, to catalyse mRNA transcription and protein synthesis. To provide an amino acid source, CFE systems typically use a commercial standard, which is often proprietary. Herein we show that a range of common microbiology rich media (i.e., tryptone, peptone, yeast extract and casamino acids) unexpectedly provide an effective and low-cost amino acid source. We show that this approach is generalisable, by comparing batch variability and protein production in the following range of CFE systems: Escherichia coli (Rosetta™ 2 (DE3), BL21(DE3)), Streptomyces venezuelae and Pichia pastoris. In all CFE systems, we show equivalent or increased protein synthesis capacity upon replacement of the commercial amino acid source. In conclusion, we suggest rich microbiology media provides a new amino acid source for CFE systems with potential broad use in synthetic biology and industrial biotechnology applications.

5.
Eng Biol ; 6(2-3): 62-68, 2022.
Article in English | MEDLINE | ID: mdl-36969103

ABSTRACT

In synthetic biology, biosensors are routinely coupled with a gene expression system for detecting small molecules and physical signals. We reveal a fluorescent complex, based on the interaction of an Escherichia coli double bond reductase (EcCurA), as a detection unit with its substrate curcumin-we call this a direct protein (DiPro) biosensor. Using a cell-free synthetic biology approach, we use the EcCurA DiPro biosensor to fine tune 10 reaction parameters (cofactor, substrate, and enzyme levels) for cell-free curcumin biosynthesis, assisted through acoustic liquid handling robotics. Overall, we increase EcCurA-curcumin DiPro fluorescence within cell-free reactions by 78-fold. This finding adds to the growing family of protein-ligand complexes that are naturally fluorescent and potentially exploitable for a range of applications, including medical imaging to engineering high-value chemicals.

6.
Front Bioeng Biotechnol ; 9: 799122, 2021.
Article in English | MEDLINE | ID: mdl-34912793
7.
ACS Chem Biol ; 16(11): 2116-2123, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34648268

ABSTRACT

Natural products and their analogues are often challenging to synthesize due to their complex scaffolds and embedded functional groups. Solely relying on engineering the biosynthesis of natural products may lead to limited compound diversity. Integrating synthetic biology with synthetic chemistry allows rapid access to much more diverse portfolios of xenobiotic compounds, which may accelerate the discovery of new therapeutics. As a proof-of-concept, by supplementing an Escherichia coli strain expressing the violacein biosynthesis pathway with 5-bromo-tryptophan in vitro or tryptophan 7-halogenase RebH in vivo, six halogenated analogues of violacein or deoxyviolacein were generated, demonstrating the promiscuity of the violacein biosynthesis pathway. Furthermore, 20 new derivatives were generated from 5-brominated violacein analogues via the Suzuki-Miyaura cross-coupling reaction directly using the crude extract without prior purification. Herein we demonstrate a flexible and rapid approach to access a diverse chemical space that can be applied to a wide range of natural product scaffolds.


Subject(s)
Biological Products/chemistry , Indoles/chemistry , Biosynthetic Pathways , Molecular Structure , Synthetic Biology
8.
Synth Biol (Oxf) ; 6(1): ysab021, 2021.
Article in English | MEDLINE | ID: mdl-34712844

ABSTRACT

Cell-free extract and purified enzyme-based systems provide an attractive solution to study biosynthetic strategies towards a range of chemicals. 4-(4-hydroxyphenyl)-butan-2-one, also known as raspberry ketone, is the major fragrance component of raspberry fruit and is used as a natural additive in the food and sports industry. Current industrial processing of the natural form of raspberry ketone involves chemical extraction from a yield of ∼1-4 mg kg-1 of fruit. Due to toxicity, microbial production provides only low yields of up to 5-100 mg L-1. Herein, we report an efficient cell-free strategy to probe into a synthetic enzyme pathway that converts either L-tyrosine or the precursor, 4-(4-hydroxyphenyl)-buten-2-one, into raspberry ketone at up to 100% conversion. As part of this strategy, it is essential to recycle inexpensive cofactors. Specifically, the final enzyme step in the pathway is catalyzed by raspberry ketone/zingerone synthase (RZS1), an NADPH-dependent double bond reductase. To relax cofactor specificity towards NADH, the preferred cofactor for cell-free biosynthesis, we identify a variant (G191D) with strong activity with NADH. We implement the RZS1 G191D variant within a 'one-pot' cell-free reaction to produce raspberry ketone at high-yield (61 mg L-1), which provides an alternative route to traditional microbial production. In conclusion, our cell-free strategy complements the growing interest in engineering synthetic enzyme cascades towards industrially relevant value-added chemicals.

9.
J Vis Exp ; (175)2021 09 10.
Article in English | MEDLINE | ID: mdl-34570109

ABSTRACT

Streptomyces spp. are a major source of clinical antibiotics and industrial chemicals. Streptomyces venezuelae ATCC 10712 is a fast-growing strain and a natural producer of chloramphenicol, jadomycin, and pikromycin, which makes it an attractive candidate as a next-generation synthetic biology chassis. Therefore, genetic tools that accelerate the development of S. venezuelae ATCC 10712, as well as other Streptomyces spp. models, are highly desirable for natural product engineering and discovery. To this end, a dedicated S. venezuelae ATCC 10712 cell-free system is provided in this protocol to enable high-yield heterologous expression of high G+C (%) genes. This protocol is suitable for small-scale (10-100 µL) batch reactions in either 96-well or 384-well plate format, while reactions are potentially scalable. The cell-free system is robust and can achieve high yields (~5-10 µM) for a range of recombinant proteins in a minimal setup. This work also incorporates a broad plasmid toolset for real-time measurement of mRNA and protein synthesis, as well as in-gel fluorescence staining of tagged proteins. This protocol can also be integrated with high-throughput gene expression characterization workflows or the study of enzyme pathways from high G+C (%) genes present in Actinomycetes genomes.


Subject(s)
Biological Products , Streptomyces , Plasmids , Streptomyces/genetics , Synthetic Biology
11.
Appl Microbiol Biotechnol ; 105(14-15): 5719-5737, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34263356

ABSTRACT

Over 30 years, the Gram-positive bacterium Priestia megaterium (previously known as Bacillus megaterium) was systematically developed for biotechnological applications ranging from the production of small molecules like vitamin B12, over polymers like polyhydroxybutyrate (PHB) up to the in vivo and in vitro synthesis of multiple proteins and finally whole-cell applications. Here we describe the use of the natural vitamin B12 (cobalamin) producer P. megaterium for the elucidation of the biosynthetic pathway and the subsequent systematic knowledge-based development for production purposes. The formation of PHB, a natural product of P. megaterium and potential petro-plastic substitute, is covered and discussed. Further important biotechnological characteristics of P. megaterium for recombinant protein production including high protein secretion capacity and simple cultivation on value-added carbon sources are outlined. This includes the advanced system with almost 30 commercially available expression vectors for the intracellular and extracellular production of recombinant proteins at the g/L scale. We also revealed a novel P. megaterium transcription-translation system as a complementary and versatile biotechnological tool kit. As an impressive biotechnology application, the formation of various cytochrome P450 is also critically highlighted. Finally, whole cellular applications in plant protection are completing the overall picture of P. megaterium as a versatile giant cell factory. KEY POINTS: • The use of Priestia megaterium for the biosynthesis of small molecules and recombinant proteins through to whole-cell applications is reviewed. • P. megaterium can act as a promising alternative host in biotechnological production processes.


Subject(s)
Bacillus megaterium , Beauty , Bacillus megaterium/genetics , Biotechnology , Recombinant Proteins/genetics , Vitamin B 12
12.
Microb Cell Fact ; 20(1): 116, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34112158

ABSTRACT

BACKGROUND:  A key focus of synthetic biology is to develop microbial or cell-free based biobased routes to value-added chemicals such as fragrances. Originally, we developed the EcoFlex system, a Golden Gate toolkit, to study genes/pathways flexibly using Escherichia coli heterologous expression. In this current work, we sought to use EcoFlex to optimise a synthetic raspberry ketone biosynthetic pathway. Raspberry ketone is a high-value (~ £20,000 kg-1) fine chemical farmed from raspberry (Rubeus rubrum) fruit. RESULTS:  By applying a synthetic biology led design-build-test-learn cycle approach, we refactor the raspberry ketone pathway from a low level of productivity (0.2 mg/L), to achieve a 65-fold (12.9 mg/L) improvement in production. We perform this optimisation at the prototype level (using microtiter plate cultures) with E. coli DH10ß, as a routine cloning host. The use of E. coli DH10ß facilitates the Golden Gate cloning process for the screening of combinatorial libraries. In addition, we also newly establish a novel colour-based phenotypic screen to identify productive clones quickly from solid/liquid culture. CONCLUSIONS:  Our findings provide a stable raspberry ketone pathway that relies upon a natural feedstock (L-tyrosine) and uses only constitutive promoters to control gene expression. In conclusion we demonstrate the capability of EcoFlex for fine-tuning a model fine chemical pathway and provide a range of newly characterised promoter tools gene expression in E. coli.


Subject(s)
Biosynthetic Pathways , Butanones/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Polyesters/metabolism , Tyrosine/metabolism , Cloning, Molecular/methods , Gene Expression Regulation, Bacterial , Genetic Engineering , Industrial Microbiology , Promoter Regions, Genetic , Synthetic Biology
13.
ACS Synth Biol ; 10(2): 402-411, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33497199

ABSTRACT

Prokaryotic cell-free coupled transcription-translation (TX-TL) systems are emerging as a powerful tool to examine natural product biosynthetic pathways in a test tube. The key advantages of this approach are the reduced experimental time scales and controlled reaction conditions. To realize this potential, it is essential to develop specialized cell-free systems in organisms enriched for biosynthetic gene clusters. This requires strong protein production and well-characterized synthetic biology tools. The Streptomyces genus is a major source of natural products. To study enzymes and pathways from Streptomyces, we originally developed a homologous Streptomyces cell-free system to provide a native protein folding environment, a high G+C (%) tRNA pool, and an active background metabolism. However, our initial yields were low (36 µg/mL) and showed a high level of batch-to-batch variation. Here, we present an updated high-yield and robust Streptomyces TX-TL protocol, reaching up to yields of 266 µg/mL of expressed recombinant protein. To complement this, we rapidly characterize a range of DNA parts with different reporters, express high G+C (%) biosynthetic genes, and demonstrate an initial proof of concept for combined transcription, translation, and biosynthesis of Streptomyces metabolic pathways in a single "one-pot" reaction.


Subject(s)
Metabolic Engineering/methods , Multigene Family , Protein Biosynthesis/genetics , Streptomyces/genetics , Streptomyces/metabolism , Biological Products/metabolism , Cell Extracts , DNA/metabolism , Heme/biosynthesis , Melanins/biosynthesis , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Synthetic Biology/methods
15.
Emerg Top Life Sci ; 3(5): 529-535, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-33523168

ABSTRACT

Cell-free synthetic biochemistry aims to engineer chemical biology by exploiting biosynthetic dexterity outside of the constraints of a living cell. One particular use is for making natural products, where cell-free systems have initially demonstrated feasibility in the biosynthesis of a range of complex natural products classes. This has shown key advantages over total synthesis, such as increased yield, enhanced regioselectivity, use of reduced temperatures and less reaction steps. Uniquely, cell-free synthetic biochemistry represents a new area that seeks to advance upon these efforts and is particularly useful for defining novel synthetic pathways to replace natural routes and optimising the production of complex natural product targets from low-cost precursors. Key challenges and opportunities will include finding solutions to scaled-up cell-free biosynthesis, as well as the targeting of high value and toxic natural products that remain challenging to make either through whole-cell biotransformation platforms or total synthesis routes. Although underexplored, cell-free synthetic biochemistry could also be used to develop 'non-natural' natural products or so-called xenobiotics for novel antibiotics and drugs, which can be difficult to engineer directly within a living cell.

16.
Proc Natl Acad Sci U S A ; 115(19): E4340-E4349, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29666238

ABSTRACT

Native cell-free transcription-translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription-translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription-translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.


Subject(s)
Bacillus megaterium , Models, Biological , Protein Biosynthesis , Transcription, Genetic , Bacillus megaterium/chemistry , Bacillus megaterium/genetics , Bacillus megaterium/metabolism , Cell-Free System/chemistry , Cell-Free System/metabolism
17.
Biochem Soc Trans ; 45(3): 785-791, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28620040

ABSTRACT

Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells.


Subject(s)
Synthetic Biology/methods , Biosynthetic Pathways , Cell-Free System , Gene Regulatory Networks
19.
Biotechnol J ; 12(4)2017 Apr.
Article in English | MEDLINE | ID: mdl-28139884

ABSTRACT

Streptomyces venezuelae is a promising chassis in synthetic biology for fine chemical and secondary metabolite pathway engineering. The potential of S. venezuelae could be further realized by expanding its capability with the introduction of its own in vitro transcription-translation (TX-TL) system. TX-TL is a fast and expanding technology for bottom-up design of complex gene expression tools, biosensors and protein manufacturing. Herein, we introduce a S. venezuelae TX-TL platform by reporting a streamlined protocol for cell-extract preparation, demonstrating high-yield synthesis of a codon-optimized sfGFP reporter and the prototyping of a synthetic tetracycline-inducible promoter in S. venezuelae TX-TL based on the tetO-TetR repressor system. The aim of this system is to provide a host for the homologous production of exotic enzymes from Actinobacteria secondary metabolism in vitro. As an example, the authors demonstrate the soluble synthesis of a selection of enzymes (12-70 kDa) from the Streptomyces rimosus oxytetracycline pathway.


Subject(s)
Cell-Free System , Metabolic Networks and Pathways/genetics , Streptomyces/genetics , Synthetic Biology , Actinobacteria/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Oxytetracycline/metabolism , Promoter Regions, Genetic , Protein Biosynthesis , Streptomyces/metabolism , Transcription, Genetic
20.
Nature ; 543(7643): 78-82, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28225763

ABSTRACT

Methane biogenesis in methanogens is mediated by methyl-coenzyme M reductase, an enzyme that is also responsible for the utilization of methane through anaerobic methane oxidation. The enzyme uses an ancillary factor called coenzyme F430, a nickel-containing modified tetrapyrrole that promotes catalysis through a methyl radical/Ni(ii)-thiolate intermediate. However, it is unclear how coenzyme F430 is synthesized from the common primogenitor uroporphyrinogen iii, incorporating 11 steric centres into the macrocycle, although the pathway must involve chelation, amidation, macrocyclic ring reduction, lactamization and carbocyclic ring formation. Here we identify the proteins that catalyse the biosynthesis of coenzyme F430 from sirohydrochlorin, termed CfbA-CfbE, and demonstrate their activity. The research completes our understanding of how the repertoire of tetrapyrrole-based pigments are constructed, permitting the development of recombinant systems to use these metalloprosthetic groups more widely.


Subject(s)
Biocatalysis , Biosynthetic Pathways , Coenzymes/biosynthesis , Metalloporphyrins/metabolism , Methane/biosynthesis , Methanosarcina barkeri/enzymology , Tetrapyrroles/biosynthesis , Amidohydrolases/genetics , Amidohydrolases/metabolism , Biosynthetic Pathways/genetics , Coenzymes/chemistry , Lyases/genetics , Lyases/metabolism , Metalloporphyrins/chemistry , Methane/analogs & derivatives , Methane/metabolism , Methanosarcina barkeri/genetics , Methanosarcina barkeri/metabolism , Multigene Family , Nickel/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Tetrapyrroles/chemistry , Uroporphyrins/chemistry , Uroporphyrins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...