Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 615(7953): 697-704, 2023 03.
Article in English | MEDLINE | ID: mdl-36890230

ABSTRACT

Neoantigens are peptides derived from non-synonymous mutations presented by human leukocyte antigens (HLAs), which are recognized by antitumour T cells1-14. The large HLA allele diversity and limiting clinical samples have restricted the study of the landscape of neoantigen-targeted T cell responses in patients over their treatment course. Here we applied recently developed technologies15-17 to capture neoantigen-specific T cells from blood and tumours from patients with metastatic melanoma with or without response to anti-programmed death receptor 1 (PD-1) immunotherapy. We generated personalized libraries of neoantigen-HLA capture reagents to single-cell isolate the T cells and clone their T cell receptors (neoTCRs). Multiple T cells with different neoTCR sequences (T cell clonotypes) recognized a limited number of mutations in samples from seven patients with long-lasting clinical responses. These neoTCR clonotypes were recurrently detected over time in the blood and tumour. Samples from four patients with no response to anti-PD-1 also demonstrated neoantigen-specific T cell responses in the blood and tumour to a restricted number of mutations with lower TCR polyclonality and were not recurrently detected in sequential samples. Reconstitution of the neoTCRs in donor T cells using non-viral CRISPR-Cas9 gene editing demonstrated specific recognition and cytotoxicity to patient-matched melanoma cell lines. Thus, effective anti-PD-1 immunotherapy is associated with the presence of polyclonal CD8+ T cells in the tumour and blood specific for a limited number of immunodominant mutations, which are recurrently recognized over time.


Subject(s)
Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Immunotherapy , Melanoma , Humans , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Melanoma/drug therapy , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , HLA Antigens/immunology , Neoplasm Metastasis , Precision Medicine , Gene Editing , CRISPR-Cas Systems , Mutation
2.
Nature ; 615(7953): 687-696, 2023 03.
Article in English | MEDLINE | ID: mdl-36356599

ABSTRACT

T cell receptors (TCRs) enable T cells to specifically recognize mutations in cancer cells1-3. Here we developed a clinical-grade approach based on CRISPR-Cas9 non-viral precision genome-editing to simultaneously knockout the two endogenous TCR genes TRAC (which encodes TCRα) and TRBC (which encodes TCRß). We also inserted into the TRAC locus two chains of a neoantigen-specific TCR (neoTCR) isolated from circulating T cells of patients. The neoTCRs were isolated using a personalized library of soluble predicted neoantigen-HLA capture reagents. Sixteen patients with different refractory solid cancers received up to three distinct neoTCR transgenic cell products. Each product expressed a patient-specific neoTCR and was administered in a cell-dose-escalation, first-in-human phase I clinical trial ( NCT03970382 ). One patient had grade 1 cytokine release syndrome and one patient had grade 3 encephalitis. All participants had the expected side effects from the lymphodepleting chemotherapy. Five patients had stable disease and the other eleven had disease progression as the best response on the therapy. neoTCR transgenic T cells were detected in tumour biopsy samples after infusion at frequencies higher than the native TCRs before infusion. This study demonstrates the feasibility of isolating and cloning multiple TCRs that recognize mutational neoantigens. Moreover, simultaneous knockout of the endogenous TCR and knock-in of neoTCRs using single-step, non-viral precision genome-editing are achieved. The manufacture of neoTCR engineered T cells at clinical grade, the safety of infusing up to three gene-edited neoTCR T cell products and the ability of the transgenic T cells to traffic to the tumours of patients are also demonstrated.


Subject(s)
Cell- and Tissue-Based Therapy , Gene Editing , Neoplasms , Precision Medicine , Receptors, Antigen, T-Cell , T-Lymphocytes , Transgenes , Humans , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Biopsy , Cell- and Tissue-Based Therapy/adverse effects , Cell- and Tissue-Based Therapy/methods , Cytokine Release Syndrome/complications , Disease Progression , Encephalitis/complications , Gene Knock-In Techniques , Gene Knockout Techniques , Genes, T-Cell Receptor alpha , Genes, T-Cell Receptor beta , Mutation , Neoplasms/complications , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Patient Safety , Precision Medicine/adverse effects , Precision Medicine/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transgenes/genetics , HLA Antigens/immunology , CRISPR-Cas Systems
3.
Oncoimmunology ; 7(3): e1407898, 2018.
Article in English | MEDLINE | ID: mdl-29399409

ABSTRACT

Relapsed T-cell malignancies have poor outcomes when treated with chemotherapy, but survival after allogeneic bone marrow transplantation (BMT) approaches 50%. A limitation to BMT is the difficulty of achieving remission prior to transplant. Chimeric antigen receptor (CAR) T-cell therapy has shown successes in B-cell malignancies. This approach is difficult to adapt for the treatment of T-cell disease due to lack of a T-lymphoblast specific antigen and the fratricide of CAR T cells that occurs with T-cell antigen targeting. To circumvent this problem two approaches were investigated. First, a natural killer (NK) cell line, which does not express CD5, was used for CAR expression. Second, CRISPR-Cas9 genome editing technology was used to knockout CD5 expression in CD5-positive Jurkat T cells and in primary T cells, allowing for the use of CD5-negative T cells for CAR expression. Two structurally distinct anti-CD5 sequences were also tested, i) a traditional immunoglobulin-based single chain variable fragment (scFv) and ii) a lamprey-derived variable lymphocyte receptor (VLR), which we previously showed can be used for CAR-based recognition. Our results show i) both CARs yield comparable T-cell activation and NK cell-based cytotoxicity when targeting CD5-positive cells, ii) CD5-edited CAR-modified Jurkat T cells have reduced self-activation compared to that of CD5-positive CAR-modified T cells, iii) CD5-edited CAR-modified Jurkat T cells have increased activation in the presence of CD5-positive target cells compared to that of CD5-positive CAR-modified T cells, and iv) although modest effects were seen, a mouse model using the CAR-expressing NK cell line showed the scFv-CAR was superior to the VLR-CAR in delaying disease progression.

4.
Mol Ther Oncolytics ; 3: 16026, 2016.
Article in English | MEDLINE | ID: mdl-27933313

ABSTRACT

Chimeric antigen receptors (CARs) are used to redirect effector cell specificity to selected cell surface antigens. Using CARs, antitumor activity can be initiated in patients with no prior tumor specific immunity. Although CARs have shown promising clinical results, the technology remains limited by the availability of specific cognate cell target antigens. To increase the repertoire of targetable tumor cell antigens we utilized the immune system of the sea lamprey to generate directed variable lymphocyte receptors (VLRs). VLRs serve as membrane bound and soluble immune effectors analogous but not homologous to immunoglobulins. They have a fundamentally different structure than immunoglobulin (Ig)-based antibodies while still demonstrating high degrees of specificity and affinity. To test the functionality of VLRs as the antigen recognition domain of CARs, two VLR-CARs were created. One contained a VLR specific for a murine B cell leukemia and the other contained a VLR specific for the human T cell surface antigen, CD5. The CAR design consisted of the VLR sequence, myc-epitope tag, CD28 transmembrane domain, and intracellular CD3ζ signaling domain. We demonstrate proof of concept, including gene transfer, biosynthesis, cell surface localization, and effector cell activation for multiple VLR-CAR designs. Therefore, VLRs provide an alternative means of CAR-based cancer recognition.

5.
Biomicrofluidics ; 8(4): 046501, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25379106

ABSTRACT

Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm(2) and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries.

6.
Exp Hematol ; 39(12): 1124-1135.e4, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21906573

ABSTRACT

We recently re-established a line of sheep that accurately mimics the clinical symptoms and genetics of severe hemophilia A (HA). Here, we tested a novel, nonablative transplantation therapy in two pediatric HA animals. Paternal mesenchymal stem cells (MSC) were transduced with a porcine FVIII-encoding lentivector and transplanted via the intraperitoneal route without preconditioning. At the time of transplantation, these animals had received multiple human FVIII treatments for various spontaneous bleeds and had developed debilitating hemarthroses, which produced severe defects in posture and gait. Transplantation of transduced MSC resolved all existent hemarthroses, and spontaneous bleeds ceased. Damaged joints recovered fully; the animals regained normal posture and gait and resumed normal activity. Despite achieving factor-independence, a sharp rise in pre-existent Bethesda titers occurred following transplantation, decreasing the effectiveness and duration of therapy. Postmortem examination revealed widespread engraftment, with MSC present within the lung, liver, intestine, and thymus, but particularly within joints affected at the time of transplantation, suggesting MSC homed to sites of ongoing injury/inflammation to release FVIII, explaining the dramatic improvement in hemarthrotic joints. In summary, this novel, nonablative MSC transplantation was straightforward, safe, and converted life-threatening, debilitating HA to a moderate phenotype in a large animal model.


Subject(s)
Disease Models, Animal , Factor VIII/genetics , Hemophilia A/surgery , Mesenchymal Stem Cell Transplantation , Sheep/genetics , Animals , Cell Lineage , Cell Movement , Factor VIII/immunology , Female , Genetic Vectors/genetics , Graft Survival , Hemarthrosis/etiology , Hemarthrosis/pathology , Hemophilia A/complications , Hemophilia A/drug therapy , Hemorrhage/etiology , Humans , Injections, Intraperitoneal , Isoantibodies/biosynthesis , Isoantibodies/immunology , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/virology , Phenotype , Recombinant Proteins/therapeutic use , Remission Induction , Sheep/blood , Sus scrofa/genetics , Tissue Distribution
7.
J Gene Med ; 12(4): 333-44, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20209485

ABSTRACT

BACKGROUND: Major complications with respect to the development of gene therapy treatments for hemophilia A include low factor VIII (fVIII) expression and humoral immune responses resulting in inhibitory anti-fVIII antibodies. We previously achieved sustained curative fVIII activity levels in hemophilia A mice after nonmyeloablative transplantation of genetically-modified hematopoietic stem cells (HSCs) encoding a B-domain deleted porcine fVIII (BDDpfVIII) transgene with no evidence of an immune response. METHODS: Mouse HSCs were transduced using MSCV-based recombinant virus encoding BDDpfVIII and transplanted into hemophilia A mice. Transplanted mice were followed for donor cell engraftment, fVIII expression and activity, and generation of anti-fVIII immune response. RESULTS: We now show that: (i) the protein expressed by hematopoietic cells has a specific activity similar to that of purified protein; (ii) BDDpfVIII expressed from hematopoietic cells effectively induces thrombus formation, which is shown using a new method of in vivo analysis of fVIII function; (iii) naïve and pre-immunized mice receiving HSC gene therapy are nonresponsive to challenges with recombinant human fVIII; (iv) nonresponsiveness is not broken after stringent challenges with BDDpfVIII; and (v) T cells from these mice are unresponsive to BDDpfVIII presentation. Furthermore, stem cells isolated from donors with high titer anti-human fVIII antibodies show no defects in donor cell engraftment or the ability to express BDDpfVIII. CONCLUSIONS: These results demonstrate that HSC gene therapy can be an effective alternative treatment for individuals with hemophilia A and may benefit patients by inducing immunological nonresponsiveness to fVIII replacement products.


Subject(s)
Factor VIII/metabolism , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Hemophilia A/therapy , Animals , Humans , Lymphocyte Activation/immunology , Mice , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...