Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230128, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38913067

ABSTRACT

Negative density dependence (NDD) in biotic interactions of interference such as plant-plant competition, granivory and herbivory are well-documented mechanisms that promote species' coexistence in diverse plant communities worldwide. Here, we investigated the generality of a novel type of NDD mechanism that operates through the mutualistic interactions of frugivory and seed dispersal among fruit-eating birds and plants. By sampling community-wide frugivory interactions at high spatial and temporal resolution in Pennsylvania, Puerto Rico, Peru, Brazil and Argentina, we evaluated whether interaction frequencies between birds and fruit resources occurred more often (selection), as expected, or below expectations (under-utilization) set by the relative fruit abundance of the fruit resources of each plant species. Our models considered the influence of temporal scales of fruit availability and bird phylogeny and diets, revealing that NDD characterizes frugivory across communities. Irrespective of taxa or dietary guild, birds tended to select fruits of plant species that were proportionally rare in their communities, or that became rare following phenological fluctuations, while they mostly under-utilized abundant fruit resources. Our results demonstrate that negative density-dependence in frugivore-plant interactions provides a strong equalizing mechanism for the dispersal processes of fleshy-fruited plant species in temperate and tropical communities, likely contributing to building and sustaining plant diversity. This article is part of the theme issue 'Diversitydependence of dispersal: interspecific interactions determine spatial dynamics'.


Subject(s)
Birds , Fruit , Symbiosis , Animals , Birds/physiology , Fruit/physiology , Seed Dispersal , Feeding Behavior , Population Density , Herbivory , Argentina , Pennsylvania , Brazil , Puerto Rico
2.
Ecol Appl ; 34(2): e2933, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37983735

ABSTRACT

Areas used for livestock production and dominated by native grasses represent a unique opportunity to reconcile biodiversity conservation and livestock production. However, limited knowledge of individual species' responses to rangeland management restricts our capacity to design grazing practices that favor endangered species and other priority birds. In this work, we applied Hierarchical Modelling of Species Communities (HMSC) to study individual species responses, as well as the influence of traits on such responses, to variables related to rangeland management using birds of the Rio de la Plata Grasslands as a case study. Based on presence-absence data collected in 454 paddocks across 46 ranches we inferred the response of 69 species considering imperfect detection. This degree of detail fills a major gap in rangeland management, as species-level responses can be used to achieve targeted conservation goals other than maximizing richness or abundance. We found that artificial pastures had an overall negative impact on many bird species, whereas the presence of tussocks had a positive effect, including all threatened species. Grassland specialists were in general sensitive to grass height and tended to respond positively to tussocks but negatively to tree cover. Controlling grass height via adjustments in stocking rate can be a useful tool to favor grassland specialists. To favor a wide range of bird species in ranches, a mosaic of short and tall native grasslands with patches of tussocks and trees is desirable. We also found that species-specific responses were modulated by their traits: small-sized birds responded positively to tussocks and tree cover while large species responded negatively to increasing grass height. Ground foragers preferred short grass while birds that scarcely use this stratum were not affected by grass height. Results on the influence of traits on bird responses are an important novelty in relation to previous work in rangelands and potentially increase our predicting capacity and model transferability across grassland regions.


Subject(s)
Biodiversity , Grassland , Animals , Birds , Endangered Species , Livestock , Poaceae , Trees
3.
PLoS One ; 17(8): e0260419, 2022.
Article in English | MEDLINE | ID: mdl-35969588

ABSTRACT

Foraging decisions by rodents are key for the long-term maintenance of oak populations in which avian seed dispersers are absent or inefficient. Decisions are determined by the environmental setting in which acorn-rodent encounters occur. In particular, seed value, competition and predation risks have been found to modify rodent foraging decisions in forest and human-modified habitats. Nonetheless, there is little information about their joint effects on rodent behavior, and hence, local acorn dispersal (or predation). In this work, we manipulate and model the mouse-oak interaction in a Spanish dehesa, an anthropogenic savanna system in which nearby areas can show contrasting levels of ungulate densities and antipredatory cover. First, we conducted a large-scale cafeteria field experiment, where we modified ungulate presence and predation risk, and followed mouse foraging decisions under contrasting levels of moonlight and acorn availability. Then, we estimated the net effects of competition and risk by means of a transition probability model that simulated mouse foraging decisions. Our results show that mice are able to adapt their foraging decisions to the environmental context, affecting initial fates of handled acorns. Under high predation risks mice foraged opportunistically carrying away large and small seeds, whereas under safe conditions large acorns tended to be predated in situ. In addition, in the presence of ungulates lack of antipredatory cover around trees reduced mice activity outside tree canopies, and hence, large acorns had a higher probability of survival. Overall, our results point out that inter-specific interactions preventing efficient foraging by scatter-hoarders can reduce acorn predation. This suggests that the maintenance of the full set of seed consumers as well as top predators in dehesas may be key for promoting local dispersal.


Subject(s)
Quercus , Seed Dispersal , Animals , Feeding Behavior , Humans , Mammals , Mice , Predatory Behavior , Rodentia , Seeds
4.
Ecol Lett ; 23(2): 348-358, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31814305

ABSTRACT

Network metrics are widely used to infer the roles of mutualistic animals in plant communities and to predict the effect of species' loss. However, their empirical validation is scarce. Here we parameterized a joint species model of frugivory and seed dispersal with bird movement and foraging data from tropical and temperate communities. With this model, we investigate the effect of frugivore loss on seed rain, and compare our predictions to those of standard coextinction models and network metrics. Topological coextinction models underestimated species loss after the removal of highly linked frugivores with unique foraging behaviours. Network metrics informed about changes in seed rain quantity after frugivore loss. However, changes in seed rain composition were only predicted by partner diversity. Nestedness, closeness, and d' specialisation could not anticipate the effects of rearrangements in plant-frugivore communities following species loss. Accounting for behavioural differences among mutualists is critical to improve predictions from network models.


Subject(s)
Seed Dispersal , Animals , Benchmarking , Birds , Fruit , Plants
5.
PeerJ ; 6: e5857, 2018.
Article in English | MEDLINE | ID: mdl-30397552

ABSTRACT

We studied key mechanisms and drivers of soil functioning by analyzing soil respiration and enzymatic activity in Mediterranean holm oak forest fragments with different influence of the agricultural matrix. For this, structural equation models (SEM) were built including data on soil abiotic (moisture, temperature, organic matter, pH, nutrients), biotic (microbial biomass, bacterial and fungal richness), and tree-structure-related (basal area) as explanatory variables of soil enzymatic activity and respiration. Our results show that increased tree growth induced by forest fragmentation in scenarios of high agricultural matrix influence triggered a cascade of causal-effect relations, affecting soil functioning. On the one hand, soil enzymatic activity was strongly stimulated by the abiotic (changes in pH and microclimate) and biotic (microbial biomass) modifications of the soil environment arising from the increased tree size and subsequent soil organic matter accumulation. Soil CO2 emissions (soil respiration), which integrate releases from all the biological activity occurring in soils (autotrophic and heterotrophic components), were mainly affected by the abiotic (moisture, temperature) modifications of the soil environment caused by trees. These results, therefore, suggest that the increasing fragmentation of forests may profoundly impact the functioning of the plant-soil-microbial system, with important effects over soil CO2 emissions and nutrient cycling at the ecosystem level. Forest fragmentation is thus revealed as a key albeit neglected factor for accurate estimations of soil carbon dynamics under global change scenarios.

SELECTION OF CITATIONS
SEARCH DETAIL
...