Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 16(4): 1004-1026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472366

ABSTRACT

Viral neuroinfections represent a major health burden for which the development of antivirals is needed. Antiviral compounds that target the consequences of a brain infection (symptomatic treatment) rather than the cause (direct-acting antivirals) constitute a promising mitigation strategy that requires to be investigated in relevant models. However, physiological surrogates mimicking an adult human cortex are lacking, limiting our understanding of the mechanisms associated with viro-induced neurological disorders. Here, we optimized the Organotypic culture of Post-mortem Adult human cortical Brain explants (OPAB) as a preclinical platform for Artificial Intelligence (AI)-driven antiviral studies. OPAB shows robust viability over weeks, well-preserved 3D cytoarchitecture, viral permissiveness, and spontaneous local field potential (LFP). Using LFP as a surrogate for neurohealth, we developed a machine learning framework to predict with high confidence the infection status of OPAB. As a proof-of-concept, we showed that antiviral-treated OPAB could partially restore LFP-based electrical activity of infected OPAB in a donor-dependent manner. Together, we propose OPAB as a physiologically relevant and versatile model to study neuroinfections and beyond, providing a platform for preclinical drug discovery.


Subject(s)
Antiviral Agents , Hepatitis C, Chronic , Humans , Antiviral Agents/pharmacology , Artificial Intelligence , Microphysiological Systems , Brain
2.
Cell Death Differ ; 29(11): 2107-2122, 2022 11.
Article in English | MEDLINE | ID: mdl-35449213

ABSTRACT

NFATc3 is the predominant member of the NFAT family of transcription factors in neurons, where it plays a pro-apoptotic role. Mechanisms controlling NFAT protein stability are poorly understood. Here we identify Trim39 as an E3 ubiquitin-ligase of NFATc3. Indeed, Trim39 binds and ubiquitinates NFATc3 in vitro and in cells where it reduces NFATc3 protein level and transcriptional activity. In contrast, silencing of endogenous Trim39 decreases NFATc3 ubiquitination and increases its activity, thereby resulting in enhanced neuronal apoptosis. We also show that Trim17 inhibits Trim39-mediated ubiquitination of NFATc3 by reducing both the E3 ubiquitin-ligase activity of Trim39 and the NFATc3/Trim39 interaction. Moreover, we identify Trim39 as a new SUMO-targeted E3 ubiquitin-ligase (STUbL). Indeed, mutation of SUMOylation sites in NFATc3 or SUMO-interacting motifs in Trim39 reduces NFATc3/Trim39 interaction and Trim39-induced ubiquitination of NFATc3. In addition, Trim39 preferentially ubiquitinates SUMOylated forms of NFATc3 in vitro. As a consequence, a SUMOylation-deficient mutant of NFATc3 exhibits increased stability and pro-apoptotic activity in neurons. Taken together, these data indicate that Trim39 modulates neuronal apoptosis by acting as a STUbL for NFATc3.


Subject(s)
NFATC Transcription Factors , Ubiquitin-Protein Ligases , Apoptosis , NFATC Transcription Factors/metabolism , Sumoylation , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitins/metabolism , SUMO-1 Protein/metabolism
3.
Cell Death Differ ; 26(5): 902-917, 2019 05.
Article in English | MEDLINE | ID: mdl-30042493

ABSTRACT

BCL2A1 is an anti-apoptotic member of the BCL-2 family that contributes to chemoresistance in a subset of tumors. BCL2A1 has a short half-life due to its constitutive processing by the ubiquitin-proteasome system. This constitutes a major tumor-suppressor mechanism regulating BCL2A1 function. However, the enzymes involved in the regulation of BCL2A1 protein stability are currently unknown. Here, we provide the first insight into the regulation of BCL2A1 ubiquitination. We present evidence that TRIM28 is an E3 ubiquitin-ligase for BCL2A1. Indeed, endogenous TRIM28 and BCL2A1 bind to each other at the mitochondria and TRIM28 knock-down decreases BCL2A1 ubiquitination. We also show that TRIM17 stabilizes BCL2A1 by blocking TRIM28 from binding and ubiquitinating BCL2A1, and that GSK3 is involved in the phosphorylation-mediated inhibition of BCL2A1 degradation. BCL2A1 and its close relative MCL1 are thus regulated by common factors but with opposite outcome. Finally, overexpression of TRIM28 or knock-out of TRIM17 reduced BCLA1 protein levels and restored sensitivity of melanoma cells to BRAF-targeted therapy. Therefore, our data describe a molecular rheostat in which two proteins of the TRIM family antagonistically regulate BCL2A1 stability and modulate cell death.


Subject(s)
Apoptosis/genetics , Minor Histocompatibility Antigens/genetics , Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif-Containing Protein 28/genetics , Ubiquitin-Protein Ligases/genetics , Cell Death/genetics , Cell Line, Tumor , Doxycycline/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Glycogen Synthase Kinase 3/genetics , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Phosphorylation/genetics , Proteasome Endopeptidase Complex/genetics , Protein Binding/genetics , Protein Stability , Proteolysis/drug effects , Ubiquitination/genetics
4.
Cell Rep ; 25(9): 2484-2496.e9, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30485814

ABSTRACT

Although accumulating data indicate that increased α-synuclein expression is crucial for Parkinson disease (PD), mechanisms regulating the transcription of its gene, SNCA, are largely unknown. Here, we describe a pathway regulating α-synuclein expression. Our data show that ZSCAN21 stimulates SNCA transcription in neuronal cells and that TRIM41 is an E3 ubiquitin ligase for ZSCAN21. In contrast, TRIM17 decreases the TRIM41-mediated degradation of ZSCAN21. Silencing of ZSCAN21 and TRIM17 consistently reduces SNCA expression, whereas TRIM41 knockdown increases it. The mRNA levels of TRIM17, ZSCAN21, and SNCA are simultaneously increased in the midbrains of mice following MPTP treatment. In addition, rare genetic variants in ZSCAN21, TRIM17, and TRIM41 genes occur in patients with familial forms of PD. Expression of variants in ZSCAN21 and TRIM41 genes results in the stabilization of the ZSCAN21 protein. Our data thus suggest that deregulation of the TRIM17/TRIM41/ZSCAN21 pathway may be involved in the pathogenesis of PD.


Subject(s)
Carrier Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Ubiquitin-Protein Ligases/metabolism , alpha-Synuclein/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Female , Gene Expression Regulation , Humans , Kruppel-Like Transcription Factors/chemistry , Male , Mice, Inbred C57BL , Mutation/genetics , Nuclear Proteins/chemistry , Pedigree , Protein Binding , Proteolysis , Transcription, Genetic , Tripartite Motif Proteins , Ubiquitination , alpha-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...