Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31493, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841507

ABSTRACT

Groundwater pollution can occur due to both anthropogenic and natural causes, leading to a decline in water quality and posing a threat to human health and the environment. The pollution of ground water resources with chemical pollutants is often considered. To manage water resources sustainably, ensuring their quality and quantity is crucial. Yet, testing groundwater can be expensive and time-consuming. So, using modeling to predict the chemical parameters of groundwater resources is considered to be an efficient and economical method. In this study, we examined three models to predict groundwater quality in dry regions by using R programming language. The random forest (RF) outperformed the other models in developing predictive models for water quality. Also, the multiple linear regression (MLR) model demonstrated strong performance, particularly in predicting total hardness (TH) in Aran Va Bidgol groundwater resources. The decision tree (DT) model did well but had lower performance than the RF model in predicting quality parameters. This approach can be efficacious in the field of effective management and protection of groundwater resources and enables the assessment of risks related to water resources.

2.
J Am Heart Assoc ; 12(16): e029375, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37555373

ABSTRACT

Background Particulate matter (PM) pollution is a significant risk factor for cardiovascular diseases, causing substantial disease burden and deaths worldwide. This study aimed to investigate the global burden of cardiovascular diseases attributed to PM from 1990 to 2019. Methods and Results We used the GBD (Global Burden of Disease) study 2019 to investigate disability-adjusted life-years (DALYs), years of life lost (YLLs), years lived with disability (YLDs), and deaths attributed to PM as well as its subgroups. It was shown that all burden measures' age-standardized rates for PM were in the same decreasing trend, with the highest decline recorded for deaths (-36.7%). However, the all-age DALYs increased by 31%, reaching 8.9 million in 2019, to which YLLs contributed the most (8.2 million [95% uncertainty interval, 7.3 million-9.2 million]). Men had higher deaths, DALYs, and YLLs despite lower years lived with disability in 2019 compared with women. There was an 8.1% increase in the age-standardized rate of DALYs for ambient PM; however, household air pollution from solid fuels decreased by 65.4% in the assessed period. Although higher in men, the low and high sociodemographic index regions had the highest and lowest attributed YLLs/YLDs ratio for PM pollution in 2019, respectively. Conclusions Although the total age-standardized rate of DALYs for PM-attributed cardiovascular diseases diminished from 1990 to 2019, the global burden of PM on cardiovascular diseases has increased. The differences between men and women and between regions have clinical and policy implications in global health planning toward more exact funding and resource allocation, in addition to addressing inequity in health care access.


Subject(s)
Cardiovascular Diseases , Global Burden of Disease , Male , Humans , Female , Life Expectancy , Quality-Adjusted Life Years , Particulate Matter/adverse effects , Cardiovascular Diseases/epidemiology , Risk Factors , Global Health
3.
J Dent (Shiraz) ; 24(1 Suppl): 118-124, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37051497

ABSTRACT

Statement of the Problem: Mobile usage has increased worldwide over the past two decades. There are conflicting reports about the carcinogenic effects of cell phone radiation on the oral mucosa. Micronucleus (MN) is considered a reliable marker for genotoxic damage. Purpose: This study aimed to identify the impact of mobile phone radiation on the MN frequency in oral mucosal cells. Materials and Method: In this descriptive-analytical study, 50 mobile phone users between the age group of 20-38 years were included. Samples were obtained from the right and left cheek mucosa of each subject (a total 100 cell samples). Every participant filled out a questionnaire about his or her cell phone usage habits. Additionally, personal information such as age, gender, and body mass index (BMI) were assessed. The Feulgen and Papanicolaou staining methods were used for staining of the cell samples. A total of 1000 cells in each sample were evaluated for MNs. Results: The mean number of MN in exposed and non-exposed mucosa by Feulgen method was 0.71±1.13 and 0.57±1.36, respectively. Also in Papanicolaou staining, the mean number of MN in the exposed mucosa and non-exposed mucosa was 6.94±6.61 and 6.54±6.88, respectively, but these differences were not significant (p> 0.05). The frequency of MN in non-specific DNA staining was significantly (5- to 6-fold) higher than DNA-specific staining. We observed no statically significant differences between MN frequency according to age, gender, BMI, and other cell phone usage habits (p> 0.05). Conclusion: This study showed that cell phone use does not cause genotoxic effects in the buccal mucosa in the oral cavity. Moreover, using non-specific DNA staining methods can increase the frequency of MN by more than 5- to 6-fold.

4.
Environ Health ; 21(1): 105, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309664

ABSTRACT

BACKGROUND: Lead exposure (LE) and its attributable deaths and disability-adjusted life years (DALYs) have declined in the recent decade; however, it remains one of the leading public health concerns, particularly in regions with low socio-demographic index (SDI) such as the North Africa and Middle East (NAME) region. Hence, we aimed to describe the attributable burden of the LE in this region. METHODS: Data on deaths, DALYs, years of life lost (YLLs), and years lived with disability (YLDs) attributable to LE in the NAME region and its 21 countries from 1990 to 2019 were extracted from the Global Burden of Disease (GBD) 2019 study. RESULTS: In 2019, the age-standardized death and DALY rates attributable to LE were 23.4 (95% uncertainty interval: 15.1 to 33.3) and 489.3 (320.5 to 669.6) per 100,000 in the region, respectively, both of which were higher among men than women. The overall age-standardized death and DALY rates showed 27.7% and 36.8% decreases, respectively, between 1990 and 2019. In this period, Bahrain, the United Arab Emirates, and Turkey had the highest decreases in the age-standardized death and DALY rates, while Afghanistan, Egypt, and Yemen had the lowest ones. Countries within high SDI quintile had lower attributable burden to LE compared with the low SDI quintile. Cardiovascular diseases and chronic kidney diseases accounted for the 414.2 (258.6 to 580.6) and 28.7 (17.7 to 41.7) LE attributable DALYs per 100,000 in 2019, respectively. The attributable YLDs was 46.4 (20.7 to 82.1) per 100,000 in 2019, which shows a 25.7% reduction (-30.8 to -22.5%) over 1990-2019. CONCLUSIONS: The overall LE and its attributed burden by cause have decreased in the region from 1990-2019. Nevertheless, the application of cost-effective and long-term programs for decreasing LE and its consequences in NAME is needed.


Subject(s)
Global Burden of Disease , Life Expectancy , Male , Female , Humans , Quality-Adjusted Life Years , Lead , Africa, Northern/epidemiology , Turkey , Global Health , Risk Factors
5.
Aust Endod J ; 48(2): 274-282, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34529329

ABSTRACT

The aim of this study was to assess the effect of antimicrobial photodynamic therapy (aPDT) with curcumin and riboflavin on three-week Enterococcus faecalis biofilm. At first the 15-mm root canals of 65 single rooted extracted human teeth (including maxillary incisors, mandibular and maxillary canines and mandibular premolars) were separated from the crown and were prepared with ProTaper instruments. After autoclave sterilisation, samples were inoculated with E. faecalis suspension, and incubated for three weeks. After ensuring biofilm formation by scanning electron microscopy (SEM) in two teeth, the remaining 63 teeth were randomly divided into seven groups (n = 9): aPDT + curcumin, aPDT + riboflavin, LED, curcumin, riboflavin, 5.25% NaOCl (positive control) and no intervention (negative control). For light source a LED unit with 390-480 nm wavelength (peak of 460 nm), power density of 1000 ± 100 mW cm-2 and mean energy density of 60 J cm-2 was used. The roots were horizontally sectioned into coronal, middle and apical thirds each with 5 mm thicknesses. Dentin chips with equal weight (1 ± 0.005 g) were collected from the root canal walls with Gates Glidden drills and were transferred into microtubes containing 1 mL of sterile saline and vortexed for 30 s. Next, 10 µL of the contents of each tube was serially diluted and eventually, 10 µL of each solution was cultured on BHI agar. The number of colony-forming units was determined. Data were analysed using the Kruskal-Wallis and Friedman tests. The colony reduction was not significantly different between NaOCl and either riboflavin + LED or Curcumin + LED. The 5.25% NaOCl group showed maximum reduction in colony count, compared with the negative control (P = 0.00). Groups with aPDT with Curcumin + LED (P = 0.005), and with riboflavin + LED (P = 0.011) showed significant reduction in colony count in all three canal thirds (P < 0.05) without any difference with one another. With significant reduction of E. faecalis colony count, aPDT with Curcumin and riboflavin can serve as an adjunct to routine root canal disinfection method.


Subject(s)
Anti-Infective Agents , Curcumin , Photochemotherapy , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biofilms , Curcumin/pharmacology , Curcumin/therapeutic use , Dental Pulp Cavity , Enterococcus faecalis , Humans , Photochemotherapy/methods , Riboflavin/pharmacology , Root Canal Irrigants/pharmacology , Root Canal Irrigants/therapeutic use , Sodium Hypochlorite/pharmacology
6.
Int J Biometeorol ; 61(8): 1389-1401, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28382377

ABSTRACT

Air pollution contains a complex mixture of poisonous compounds including particulate matter (PM) which has wide spectrum of adverse health effects. The main purpose of this study was to estimate the potential health impacts or benefits due to any changes in annual PM10 level in four major megacities of Iran. The required data of PM10 for AirQ software was collected from air quality monitoring stations in four megacities of Iran. The preprocessing was carried out using macro coding in excel environment. The relationship between different presumptive scenarios and health impacts was determined. We also assessed the health benefits of reducing PM10 to WHO Air Quality Guidelines (WHO-AQGs) and National Ambient Air Quality Standards (NAAQSs) levels with regard to the rate of mortality and morbidity in studied cities. We found that the 10 µg/m3 increase in annual PM10 concentration is responsible for seven (95% CI 6-8) cases increase in total number of deaths per 2 × 105 person. We also found that 10.7, 7.2, 5.7, and 5.3% of total death is attributable to short-term exposure to air pollution for Ahvaz, Isfahan, Shiraz, and Tehran, respectively. We found that by attaining the WHO's proposed value for PM10, the potential health benefits of 89, 84, 79, and 78% were obtained in Ahvaz, Isfahan, Shiraz, and Tehran, respectively. The results also indicated that 27, 10, 3, and 1% of health impacts were attributed to dust storm days for Ahvaz, Isfahan, Shiraz, and Tehran, respectively.


Subject(s)
Air Pollutants/analysis , Air Pollution/prevention & control , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollution/adverse effects , Cities/epidemiology , Environmental Monitoring , Humans , Iran/epidemiology , Morbidity , Mortality , Particulate Matter/adverse effects , Risk
7.
Water Sci Technol ; 72(11): 2095-102, 2015.
Article in English | MEDLINE | ID: mdl-26606105

ABSTRACT

Recently, notable attempts have been devoted to removing emerging pollutants from water resources. Benzotriazole (BTA) as an emerging pollutant has widely been detected in the aquatic environment and water resources. In the current work, peroxymonosulfate (PMS) and persulfate (PS) were added to a TiO2/UV system for BTA degradation, as electron acceptors to overcome recombination of hole and electron. Additions of PMS and PS to the photocatalysis process considerably increased removal efficiency. The rate constants of UV/TiO2/PMS, UV/TiO2/PS and UV/TiO2 were 0.0217 min(-1), 0.0152 min(-1) and 0.0052 min(-1) respectively. The results showed that pH significantly affected the UV/TiO2/PMS system while it marginally affected UV/TiO2/PS. Scavenging experiments using alcohols indicated that in acidic pH, the dominant oxidant was sulfate radical in both systems. The contribution of hydroxyl radical in BTA degradation was boosted at alkaline and neutral conditions especially in the UV/TiO2/PMS system. Moreover, other scavenging experiments implied that reaction of radicals occurred at both the catalyst surface and in solution. The mineralization results showed that PMS and PS significantly increased chemical oxygen demand and total organic carbon removal efficiencies. In general, presence of PMS in the photocatalysis process had a better performance compared to PS in terms of BTA removal and mineralization.


Subject(s)
Hydroxyl Radical/chemistry , Peroxides/chemistry , Sulfates/chemistry , Triazoles/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Hydrogen-Ion Concentration , Oxidation-Reduction
8.
J Environ Health Sci Eng ; 11(1): 31, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24355087

ABSTRACT

BACKGROUND: Due to the presence of non-biodegradable and toxic compounds, textile wastewater is difficult to treat by conventional methods. In the present study, Electrochemical Fenton (EF) and Chemical Fenton (CF) processes were studied and compared for the treatment of real textile wastewater. The effects of electrical current, ferrous ion, hydrogen peroxide concentration and reaction time on the removal efficiencies of COD and color were investigated. All the experiments were carried out at pH = 3. RESULTS: Both EF and CF processes were mostly efficient within hydrogen peroxide concentration of 1978 mg/L (H2O2: COD ~ 1.1). The highest COD and color removal efficiencies were 70.6% and 72.9% respectively which were obtained through the EF process in 350 mA electrical current, 1978 mg/L hydrogen peroxide and 60 minutes reaction time. Furthermore, the operational costs of EF and CF processes were 17.56 and 8.6 US$ per kilogram of the removed COD respectively. CONCLUSION: It was concluded that the electrochemical Fenton process was more efficient than the chemical Fenton process in the degradation of textile wastewater. Likewise, Although EF process imposed higher operational costs than the CF; it dramatically decreased the reaction time to gain the highest degradation efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...