Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(12): e22678, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125448

ABSTRACT

In real-world construction sites, On-Site Workshops (OSW) are installed to accelerate construction activities and facilitate the material handling process. These temporary OSWs are cost-effective, leading to decreasing the material handling cost and project makespan, which indicates their important role as a part of a construction project. However, considering the OSW, which has not been addressed in the project scheduling problems, requires the construction site to have a space capacity constraint while considering the workshop size, availability level, and other project-related constraints. In the present work, by considering the OSWs, a real construction project scheduling problem is studied as a Multi-Mode On-Site Workshop Investment Problem with Tardiness (MOSWIPT) while finding the installation/dismantling time of the OSWs. Two new (linear) mathematical programming models are proposed for MOSWIPT. Next, due to the NP-hardness of the problem, an enhanced Genetic Algorithm (GA)-based metaheuristic with efficient problem-specific improvement rules as local search and effective crossover and mutation operators is proposed. Computational experiments show that the proposed method has solved most of the instances of the addressed problem to optimality and outperformed the existing metaheuristics, e.g., Simulated Annealing (SA) and Particle Swarm Optimization (PSO). Finally, conclusions and suggestions for future studies are stated.

2.
Lab Chip ; 23(22): 4868-4875, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37867384

ABSTRACT

A diagnostic test based on microfluidic image cytometry and machine learning has been designed and applied for accurate classification of erythrocytes and leukocytes, including a unique fully-automated 5-part quantitative differentiation into neutrophils, lymphocytes, monocytes, eosinophils, and basophils, using minute amounts of whole blood in a single counting chamber. A low-cost disposable multilayer microdevice for microfluidic image cytometry was developed that comprises a 1 mm × 22 mm × 70 µm (w × l × h) rectangular microchannel, allowing the analysis of trace volume of blood (20 µL) for each assay. Automated analysis of digitized binary images applying a border following algorithm was performed allowing the qualitative analysis of erythrocytes. Bright-field imaging was used for the detection of erythrocytes and fluorescence imaging for 5-part differentiation of leukocytes after acridine orange staining, applying a convolutional neural network enabling unparalleled speed for identification and automated morphology classification yielding 98.57% accuracy. Blood samples were obtained from 30 volunteers and count values did not significantly differ from data obtained using a commercial automated hematology analyzer.


Subject(s)
Leukocytes , Microfluidics , Humans , Erythrocytes , Machine Learning , Image Cytometry
SELECTION OF CITATIONS
SEARCH DETAIL