Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 598(2): 187-198, 2024 01.
Article in English | MEDLINE | ID: mdl-38058218

ABSTRACT

Nucleoplasmin (NPM) histone chaperones regulate distinct processes in the nucleus and nucleolus. While intrinsically disordered regions (IDRs) are hallmarks of NPMs, it is not clear whether all NPM functions require these unstructured features. We assessed the importance of IDRs in a yeast NPM-like protein and found that regulation of rDNA copy number and genetic interactions with the nucleolar RNA surveillance machinery require the highly conserved FKBP prolyl isomerase domain, but not the NPM domain or IDRs. By contrast, transcriptional repression in the nucleus requires IDRs. Furthermore, multiple lysines in polyacidic serine/lysine motifs of IDRs are required for both lysine polyphosphorylation and NPM-mediated transcriptional repression. These results demonstrate that this NPM-like protein relies on IDRs only for some of its chromatin-related functions.


Subject(s)
Histone Chaperones , Lysine , Histone Chaperones/genetics , Histone Chaperones/metabolism , Nucleoplasmins/metabolism , Lysine/metabolism , Chromatin/genetics , Chromatin/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
2.
J Cell Biol ; 222(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37042812

ABSTRACT

The nuclear envelope (NE) is important in maintaining genome organization. The role of lipids in communication between the NE and telomere regulation was investigated, including how changes in lipid composition impact gene expression and overall nuclear architecture. Yeast was treated with the non-metabolizable lysophosphatidylcholine analog edelfosine, known to accumulate at the perinuclear ER. Edelfosine induced NE deformation and disrupted telomere clustering but not anchoring. Additionally, the association of Sir4 at telomeres decreased. RNA-seq analysis showed altered expression of Sir-dependent genes located at sub-telomeric (0-10 kb) regions, consistent with Sir4 dispersion. Transcriptomic analysis revealed that two lipid metabolic circuits were activated in response to edelfosine, one mediated by the membrane sensing transcription factors, Spt23/Mga2, and the other by a transcriptional repressor, Opi1. Activation of these transcriptional programs resulted in higher levels of unsaturated fatty acids and the formation of nuclear lipid droplets. Interestingly, cells lacking Sir proteins displayed resistance to unsaturated-fatty acids and edelfosine, and this phenotype was connected to Rap1.


Subject(s)
Nuclear Envelope , Silent Information Regulator Proteins, Saccharomyces cerevisiae , Telomere , Membrane Proteins/metabolism , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Phospholipid Ethers/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Telomere/genetics , Telomere/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Aging Cell ; 20(6): e13373, 2021 06.
Article in English | MEDLINE | ID: mdl-33979898

ABSTRACT

The ribosomal DNA (rDNA) in Saccharomyces cerevisiae is in one tandem repeat array on Chromosome XII. Two regions within each repetitive element, called intergenic spacer 1 (IGS1) and IGS2, are important for organizing the rDNA within the nucleolus. The Smc5/6 complex localizes to IGS1 and IGS2. We show that Smc5/6 has a function in the rDNA beyond its role in homologous recombination (HR) at the replication fork barrier (RFB) located in IGS1. Fob1 is required for optimal binding of Smc5/6 at IGS1 whereas the canonical silencing factor Sir2 is required for its optimal binding at IGS2, independently of Fob1. Through interdependent interactions, Smc5/6 stabilizes Sir2 and Cohibin at both IGS and its recovery at IGS2 is important for nucleolar compaction and transcriptional silencing, which in turn supports rDNA stability and lifespan.


Subject(s)
Cell Cycle Proteins/metabolism , DNA, Ribosomal/genetics , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Animals
4.
Front Genet ; 11: 136, 2020.
Article in English | MEDLINE | ID: mdl-32184804

ABSTRACT

Mps3 is a SUN (Sad1-UNC-84) domain-containing protein that is located in the inner nuclear membrane (INM). Genetic screens with multiple Mps3 mutants have suggested that distinct regions of Mps3 function in relative isolation and underscore the broad involvement of Mps3 in multiple pathways including mitotic spindle formation, telomere maintenance, and lipid metabolism. These pathways have largely been characterized in isolation, without a holistic consideration for how key regulatory events within one pathway might impinge on other aspects of biology at the nuclear membrane. Mps3 is uniquely positioned to function in these multiple pathways as its N- terminus is in the nucleoplasm, where it is important for telomere anchoring at the nuclear periphery, and its C-terminus is in the lumen, where it has links with lipid metabolic processes. Emerging work suggests that the role of Mps3 in nuclear organization and lipid homeostasis are not independent, but more connected. For example, a failure in regulating Mps3 levels through the cell cycle leads to nuclear morphological abnormalities and loss of viability, suggesting a link between the N-terminal domain of Mps3 and nuclear envelope homeostasis. We will highlight work suggesting that Mps3 is pivotal factor in communicating events between the nucleus and the lipid bilayer.

5.
PLoS Genet ; 12(8): e1006268, 2016 08.
Article in English | MEDLINE | ID: mdl-27564449

ABSTRACT

SMC proteins constitute the core members of the Smc5/6, cohesin and condensin complexes. We demonstrate that Smc5/6 is present at telomeres throughout the cell cycle and its association with chromosome ends is dependent on Nse3, a subcomponent of the complex. Cells harboring a temperature sensitive mutant, nse3-1, are defective in Smc5/6 localization to telomeres and have slightly shorter telomeres. Nse3 interacts physically and genetically with two Rap1-binding factors, Rif2 and Sir4. Reduction in telomere-associated Smc5/6 leads to defects in telomere clustering, dispersion of the silencing factor, Sir4, and a loss in transcriptional repression for sub-telomeric genes and non-coding telomeric repeat-containing RNA (TERRA). SIR4 recovery at telomeres is reduced in cells lacking Smc5/6 functionality and vice versa. However, nse3-1/ sir4 Δ double mutants show additive defects for telomere shortening and TPE indicating the contribution of Smc5/6 to telomere homeostasis is only in partial overlap with SIR factor silencing. These findings support a role for Smc5/6 in telomere maintenance that is separate from its canonical role(s) in HR-mediated events during replication and telomere elongation.


Subject(s)
Cell Cycle Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Telomere/genetics , Transcription, Genetic , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/genetics , DNA Replication/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Sumoylation/genetics , Telomere-Binding Proteins/genetics , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...