Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Sci ; 16(12): 2421-2428, 2023 12.
Article in English | MEDLINE | ID: mdl-37818923

ABSTRACT

First-time-in-human (FTIH) trials are designed to generate information on the safety, tolerability, as well as the pharmacokinetic and pharmacodynamics profile of new drugs. To ensure the safety of participants, these trials need to be conducted at specifically equipped phase I clinical trial units (CTUs). In accordance with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Guideline for Good Clinical Practice (GCP) and the European Union (EU) regulatory guidelines, one of the aims of the European Regime Accelerator for Tuberculosis (ERA4TB) project is to collaboratively create a feasibility tool, through a partnership between public and private entities, for the validation of CTUs selected to conduct FTIH trials. A feasibility form, encompassing nine sections, was created to gather information on the unit in relation to key attributes of FTIH trials. Collaboratively, industry and academic partners defined the minimal criteria to ensure the adherence of CTUs to the principles of ICH GCP and regulations outlined by the European Medicines Agency (EMA) for the execution of FTIH trials. Subsequently, all CTUs available for the project were assessed for FTIH trial eligibility. The introduction of the certification procedure through the feasibility tool within ERA4TB resulted in the accreditation of the five academic CTUs, which are now prepared to carry out FTIH trials as part of the Consortium. The developed feasibility tool aims to establish open and widely used minimum requirements for the validation of academic CTUs as FTIH units, marking it as the inaugural tool for CTU validation resulting from the collaboration between industry and academia within the ERA4TB project. The established partnership has enabled an innovative and novel way of working.


Subject(s)
Humans , Feasibility Studies , European Union
2.
Methods Mol Biol ; 2378: 141-168, 2022.
Article in English | MEDLINE | ID: mdl-34985699

ABSTRACT

The endoplasmic reticulum (ER) stress sensor IRE1 is a a major player of the unfolded protein response (UPR), the main pathway driving adaptation processes to restore proteostasis.  In addition, overactivation of IRE1 signaling contributes to a variety of pathologies including diabetes, neurodegenerative diseases, and cancer. Under ER stress, IRE1 auto-transphosphorylates and oligomerizes, triggering the activation of its endoribonuclease domain located in the cytosolic region. Active IRE1 catalyzes the splicing of the mRNA encoding for the XBP1 transcription factor, in addition to degrade several RNAs through a process known as regulated IRE1-dependent decay of mRNA (RIDD). Besides its role as an UPR transducer, several posttranslational modifications and protein-protein interactions can regulate IRE1 activity and modulate its signaling in the absence of stress. Thus, investigating the function of IRE1 in physiology and disease requires the use of complementary approaches. Here, we provide detailed protocols to perform four different assays to study IRE1 activation and signaling: (i) Phos-tag gels to evaluate the phosphorylation status of IRE1, (ii) microscopy using TREX-IRE1-GFP cells to measure IRE1 oligomerization, (iii) conventional RT-PCR to assess XBP1 mRNA processing, and (iv) quantitative PCR to determine the levels of canonical UPR target genes and the degradation of several mRNAs that are target of RIDD. We propose to use these experimental strategies as "gold standards" to study IRE1 signaling.


Subject(s)
Endoribonucleases , Protein Serine-Threonine Kinases , Endoplasmic Reticulum Stress/physiology , Endoribonucleases/genetics , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Unfolded Protein Response
SELECTION OF CITATIONS
SEARCH DETAIL
...