Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38794260

ABSTRACT

In the European Union, bioequivalence (BE) for narrow therapeutic index (NTI) drugs is currently demonstrated when the 90% confidence interval for the ratio of the population geometric means of the test and reference products for AUC, and in some cases for Cmax, falls within the acceptance range of 90.00% to 111.11%. However, meeting this requirement results in an increased difficulty of demonstrating BE and a need for clinical trials with larger subject sample sizes, especially for medium-to-high variability drugs. To address this challenge, a scaled average BE based on the reference product within-subject variability for narrowing the acceptance range of NTI drugs was recently proposed. However, this approach showed increased type I error (T1E), especially close to the cut-off point between the unscaled and scaled portions of the method. Based on simulations, this limitation can be overcome by predefining the protocol the path to be followed: either the fixed 90.00-111.11% acceptance range approach or the previously proposed scaled average BE approach with a slight adjustment of the one-sided significance level α to 0.042 for a 2 × 3 × 3 partial replicate design and without a lower cut-off point. This results in a mixed approach allowing to reduce the sample size whilst not inflating the T1E.

2.
Pharmaceutics ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365166

ABSTRACT

Bioequivalence (BE) of products containing narrow therapeutic index (NTI) drugs in the European Union is currently established by demonstrating that the 90% confidence interval for the ratio of the population geometric means of the test compared to the reference product's AUC, and in certain cases Cmax, is included within the tighter acceptance range of 90.00−111.11%. An alternative criterion, consisting of narrowed limits based on the within-subject variability of the reference product, was recently proposed. Its performance for a three-period partial replicate design was tested by simulation in terms of power to show BE, type I error (T1E) and sample size requirements. A new condition, a constraint on the test-to-reference geometric mean ratio (cGMR) to be contained within the range of 90.00−111.11%, was also tested. The probability of showing BE when the products differ more than 10% was increased, but only if the reference product's within-subject variability was moderate-to-high. The inclusion of the additional cGMR limited this. An increase in the T1E (<7%) was observed. The inclusion of the additional cGMR did not change the highest inflation of the T1E. Finally, a significant sample size reduction was observed and the inclusion of the cGMR usually did not increase the required sample size.

3.
Clin Pharmacol Ther ; 111(2): 470-476, 2022 02.
Article in English | MEDLINE | ID: mdl-34657284

ABSTRACT

The current regulatory criterion for bioequivalence of narrow therapeutic index (NTI) drugs in the European Union requires that the 90% confidence interval for the ratio of the population geometric means of the test product compared with the reference for area under the plasma concentration-time curve (AUC), and in certain cases maximum plasma drug concentration (Cmax ), to be included within the tighter acceptance range of 90.00-111.11%. As a consequence, sponsors need to recruit a higher number of subjects to demonstrate bioequivalence and this may be seen as increasing the burden for the development of generics. This "one-size-fits-all" criterion is particularly questionable when the within-subject variability of the reference product is moderate to high. As an alternative, we propose a further refined statistical approach where the acceptance range is narrowed based on the within-subject variability of the reference product of the NTI drug, similar to the one used for widening the standard 80.00-125.00% acceptance range for highly variable drugs. The 80.00-125.00% acceptance range is narrowed, only if the within-subject variability is lower than 30%, down to the current NTI acceptance range of 90.00-111.11% when the within-subject variability is 13.93% or lower. Examples within the current European Medicines Agency list of NTI drugs show a considerable reduction in required sample size for drugs like tacrolimus and colchicine, where the predicted within-subject variability is 20-30%. In these cases, this approach is less sample size demanding without any expected increase in the therapeutic risks, since patients treated with reference products with moderate to high within-subject variability are frequently exposed to bioavailability differences larger than 10%.


Subject(s)
Colchicine/pharmacokinetics , Cyclosporine/pharmacokinetics , Drug Approval , Everolimus/pharmacokinetics , Models, Biological , Research Design , Tacrolimus/pharmacokinetics , Thyroxine/pharmacokinetics , Biological Variation, Individual , Colchicine/administration & dosage , Colchicine/adverse effects , Computer Simulation , Cyclosporine/administration & dosage , Cyclosporine/adverse effects , Dose-Response Relationship, Drug , Drug Compounding , Drug-Related Side Effects and Adverse Reactions/etiology , Europe , European Union , Everolimus/administration & dosage , Everolimus/adverse effects , Humans , Sample Size , Tacrolimus/administration & dosage , Tacrolimus/adverse effects , Therapeutic Equivalency , Therapeutic Index, Drug , Thyroxine/administration & dosage , Thyroxine/adverse effects , Treatment Failure
4.
Basic Clin Pharmacol Toxicol ; 106(3): 221-5, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20070293

ABSTRACT

In this MiniReview, the main modifications made during the revision of the current Note for Guidance on the Investigation of Bioavailability and Bioequivalence are reviewed and justified. Several new features have been added to this guideline, as well as changes aimed at improving the clarity of the guidance provided. The first issue to be addressed was to limit the scope of the guideline to bioequivalence studies for immediate release dosage forms with systemic action. Therefore, the guideline refers to bioequivalence alone. Moreover, the new definition of Generic Medicinal Product has been incorporated. Clearer guidance covering more specific cases is now given on sections such as: fed/fasting conditions, use of metabolite data, enantiomers and strength to be used in the bioequivalence study. Steady-state design is now restricted and other designs, such as parallel group design, replicate design and two-stage design, are now incorporated in a more explicit form. New practical guidance on Highly Variable Drug Products and Narrow Therapeutic Index Drugs has been incorporated. The possibility for a biowaiver based on the Biopharmaceutics Classification System is now more explicit for Class I drugs and can be extended to Class III drugs under restricted conditions. We are aware that the initial goal of providing a very specific and clear guidance on these issues has not been entirely achieved, mainly because it is almost impossible to cover all individual cases and predict every possible situation that may arise. Demonstration of bioequivalence will still require in many instances a case by case approach.


Subject(s)
Clinical Trials as Topic , Drugs, Generic/pharmacokinetics , Practice Guidelines as Topic , Biological Availability , Clinical Trials as Topic/legislation & jurisprudence , Clinical Trials as Topic/methods , Europe , Government Agencies , Research Design/legislation & jurisprudence , Therapeutic Equivalency
SELECTION OF CITATIONS
SEARCH DETAIL
...