Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(2): 831-843, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38084901

ABSTRACT

The large dsDNA viruses replicate their DNA as concatemers consisting of multiple covalently linked genomes. Genome packaging is catalyzed by a terminase enzyme that excises individual genomes from concatemers and packages them into preassembled procapsids. These disparate tasks are catalyzed by terminase alternating between two distinct states-a stable nuclease that excises individual genomes and a dynamic motor that translocates DNA into the procapsid. It was proposed that bacteriophage λ terminase assembles as an anti-parallel dimer-of-dimers nuclease complex at the packaging initiation site. In contrast, all characterized packaging motors are composed of five terminase subunits bound to the procapsid in a parallel orientation. Here, we describe biophysical and structural characterization of the λ holoenzyme complex assembled in solution. Analytical ultracentrifugation, small angle X-ray scattering, and native mass spectrometry indicate that 5 subunits assemble a cone-shaped terminase complex. Classification of cryoEM images reveals starfish-like rings with skewed pentameric symmetry and one special subunit. We propose a model wherein nuclease domains of two subunits alternate between a dimeric head-to-head arrangement for genome maturation and a fully parallel arrangement during genome packaging. Given that genome packaging is strongly conserved in both prokaryotic and eukaryotic viruses, the results have broad biological implications.


Subject(s)
Viral Genome Packaging , Virus Assembly , Virus Assembly/genetics , Bacteriophage lambda/genetics , Endodeoxyribonucleases/metabolism , DNA , DNA, Viral/metabolism , DNA Packaging
2.
J Mol Biol ; 434(19): 167719, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35820453

ABSTRACT

Capsid assembly pathways are strongly conserved in the complex dsDNA viruses, where major capsid proteins (MCP) self-assemble into icosahedral procapsid shells, chaperoned by a scaffolding protein. Without a scaffold, the capsid proteins aggregate and form aberrant structures. This, coupled with the rapid co-polymerization of MCP and scaffolding proteins, has thwarted characterization of the earliest steps in shell assembly. Here we interrogate the structure and biophysical properties of a soluble, assembly-deficient phage lambda major capsid protein, MCP(W308A). The mutant protein is folded, soluble to high concentrations and binds to the scaffolding protein in an apparent SP2:MCP(W308A)1 stoichiometry but does not assemble beyond this initiating complex. The MCP(W308A) crystal structure was solved to 2.7 Å revealing the canonical HK97 fold in a "pre-assembly" conformation featuring the conserved N-arm and E-loops folded into the body of the protein. Structural, biophysical and computational analyses suggest that MCP(W308A) is thermodynamically trapped in this pre-assembly conformation precluding self-association interactions required for shell assembly. A model is described wherein dynamic interactions between MCP proteins play an essential role in high fidelity viral shell assembly. Scaffold-chaperoned MCP polymerization is a strongly conserved process in all the large dsDNA viruses and our results provide insight into this primordial complex in solution and have broad biological significance in our understanding of virus assembly mechanisms.


Subject(s)
Bacteriophage lambda , Capsid Proteins , Capsid , Virus Assembly , Bacteriophage lambda/physiology , Capsid/chemistry , Capsid Proteins/chemistry , Protein Folding
3.
Enzymes ; 50: 369-413, 2021.
Article in English | MEDLINE | ID: mdl-34861943

ABSTRACT

Although the process of genome encapsidation is highly conserved in tailed bacteriophages and eukaryotic double-stranded DNA viruses, there are two distinct packaging pathways that these viruses use to catalyze ATP-driven translocation of the viral genome into a preassembled procapsid shell. One pathway is used by ϕ29-like phages and adenoviruses, which replicate and subsequently package a monomeric, unit-length genome covalently attached to a virus/phage-encoded protein at each 5'-end of the dsDNA genome. In a second, more ubiquitous packaging pathway characterized by phage lambda and the herpesviruses, the viral DNA is replicated as multigenome concatemers linked in a head-to-tail fashion. Genome packaging in these viruses thus requires excision of individual genomes from the concatemer that are then translocated into a preassembled procapsid. Hence, the ATPases that power packaging in these viruses also possess nuclease activities that cut the genome from the concatemer at the beginning and end of packaging. This review focuses on proposed mechanisms of genome packaging in the dsDNA viruses using unit-length ϕ29 and concatemeric λ genome packaging motors as representative model systems.


Subject(s)
DNA Packaging , Virus Assembly , Bacteriophage lambda/genetics , DNA, Viral , Viral Genome Packaging , Virus Assembly/genetics
4.
Enzymes ; 49: 265-303, 2021.
Article in English | MEDLINE | ID: mdl-34696835

ABSTRACT

Flaviviruses such as dengue, Japanese encephalitis, West Nile, Yellow Fever and Zika virus, cause viral hemorrhagic fever and encephalitis in humans. However, antiviral therapeutics to treat or prevent flavivirus infections are not yet available. Thus, there is pressing need to develop therapeutics and vaccines that target flavivirus infections. All flaviviruses carry a positive-sense single-stranded RNA genome, which encodes ten proteins; three structural proteins form the virus shell, and seven nonstructural (NS) proteins are involved in replication of the viral genome. While all NS proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are part of a functional membrane-bound replication complex, enzymatic activities required for flaviviral replication reside in only two NS proteins, NS3 and NS5. NS3 functions as a protease, helicase, and triphosphatase, and NS5 as a capping enzyme, methyltransferase, and RNA-dependent RNA polymerase. In this chapter, we provide an overview of viral replication focusing on the structure and function of NS3 and NS5 replicases. We further describe strategies and examples of current efforts to identify potential flavivirus inhibitors against NS3 and NS5 enzymatic activities that can be developed as therapeutic agents to combat flavivirus infections.


Subject(s)
Enzyme Inhibitors/pharmacology , Flavivirus , Viral Nonstructural Proteins , Flavivirus/enzymology , RNA-Dependent RNA Polymerase , Viral Nonstructural Proteins/genetics , Virus Replication
5.
Nucleic Acids Res ; 49(11): 6474-6488, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34050764

ABSTRACT

Double-stranded DNA viruses package their genomes into pre-assembled capsids using virally-encoded ASCE ATPase ring motors. We present the first atomic-resolution crystal structure of a multimeric ring form of a viral dsDNA packaging motor, the ATPase of the asccφ28 phage, and characterize its atomic-level dynamics via long timescale molecular dynamics simulations. Based on these results, and previous single-molecule data and cryo-EM reconstruction of the homologous φ29 motor, we propose an overall packaging model that is driven by helical-to-planar transitions of the ring motor. These transitions are coordinated by inter-subunit interactions that regulate catalytic and force-generating events. Stepwise ATP binding to individual subunits increase their affinity for the helical DNA phosphate backbone, resulting in distortion away from the planar ring towards a helical configuration, inducing mechanical strain. Subsequent sequential hydrolysis events alleviate the accumulated mechanical strain, allowing a stepwise return of the motor to the planar conformation, translocating DNA in the process. This type of helical-to-planar mechanism could serve as a general framework for ring ATPases.


Subject(s)
Adenosine Triphosphatases/chemistry , Viral Genome Packaging , Viral Proteins/chemistry , Adenosine/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/metabolism , Arginine/chemistry , Bacillus Phages/enzymology , Catalytic Domain , Crystallography, X-Ray , Molecular Dynamics Simulation , Phosphates/chemistry , Protein Structure, Quaternary , Protein Structure, Tertiary , Protein Subunits/chemistry , Viral Proteins/metabolism
6.
Sci Adv ; 7(19)2021 05.
Article in English | MEDLINE | ID: mdl-33962953

ABSTRACT

Molecular segregation and biopolymer manipulation require the action of molecular motors to do work by applying directional forces to macromolecules. The additional strand conserved E (ASCE) ring motors are an ancient family of molecular motors responsible for diverse biological polymer manipulation tasks. Viruses use ASCE segregation motors to package their genomes into their protein capsids and provide accessible experimental systems due to their relative simplicity. We show by cryo-EM-focused image reconstruction that ASCE ATPases in viral double-stranded DNA (dsDNA) packaging motors adopt helical symmetry complementary to their dsDNA substrates. Together with previous data, our results suggest that these motors cycle between helical and planar configurations, providing a possible mechanism for directional translocation of DNA. Similar changes in quaternary structure have been observed for proteasome and helicase motors, suggesting an ancient and common mechanism of force generation that has been adapted for specific tasks over the course of evolution.


Subject(s)
DNA Packaging , Viral Genome Packaging , DNA, Viral/chemistry , Genome, Viral , Viral Proteins/chemistry , Virus Assembly
7.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33888587

ABSTRACT

Many viruses utilize ringed packaging ATPases to translocate double-stranded DNA into procapsids during replication. A critical step in the mechanochemical cycle of such ATPases is ATP binding, which causes a subunit within the motor to grip DNA tightly. Here, we probe the underlying molecular mechanism by which ATP binding is coupled to DNA gripping and show that a glutamate-switch residue found in AAA+ enzymes is central to this coupling in viral packaging ATPases. Using free-energy landscapes computed through molecular dynamics simulations, we determined the stable conformational state of the ATPase active site in ATP- and ADP-bound states. Our results show that the catalytic glutamate residue transitions from an active to an inactive pose upon ATP hydrolysis and that a residue assigned as the glutamate switch is necessary for regulating this transition. Furthermore, we identified via mutual information analyses the intramolecular signaling pathway mediated by the glutamate switch that is responsible for coupling ATP binding to conformational transitions of DNA-gripping motifs. We corroborated these predictions with both structural and functional experimental measurements. Specifically, we showed that the crystal structure of the ADP-bound P74-26 packaging ATPase is consistent with the structural coupling predicted from simulations, and we further showed that disrupting the predicted signaling pathway indeed decouples ATPase activity from DNA translocation activity in the φ29 DNA packaging motor. Our work thus establishes a signaling pathway that couples chemical and mechanical events in viral DNA packaging motors.


Subject(s)
Adenosine Triphosphatases/metabolism , Glutamic Acid/metabolism , Molecular Dynamics Simulation , Viral Genome Packaging , Signal Transduction
8.
Viruses ; 13(1)2020 12 23.
Article in English | MEDLINE | ID: mdl-33374840

ABSTRACT

Double-stranded DNA viruses package their genomes into pre-assembled protein procapsids. This process is driven by macromolecular motors that transiently assemble at a unique vertex of the procapsid and utilize homomeric ring ATPases to couple genome encapsidation to ATP hydrolysis. Here, we describe the biochemical and biophysical characterization of the packaging ATPase from Lactococcus lactis phage asccφ28. Size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), small angle X-ray scattering (SAXS), and negative stain transmission electron microscopy (TEM) indicate that the ~45 kDa protein formed a 443 kDa cylindrical assembly with a maximum dimension of ~155 Å and radius of gyration of ~54 Å. Together with the dimensions of the crystallographic asymmetric unit from preliminary X-ray diffraction experiments, these results indicate that gp11 forms a decameric D5-symmetric complex consisting of two pentameric rings related by 2-fold symmetry. Additional kinetic analysis shows that recombinantly expressed gp11 has ATPase activity comparable to that of functional ATPase rings assembled on procapsids in other genome packaging systems. Hence, gp11 forms rings in solution that likely reflect the fully assembled ATPases in active virus-bound motor complexes. Whereas ATPase functionality in other double-stranded DNA (dsDNA) phage packaging systems requires assembly on viral capsids, the ability to form functional rings in solution imparts gp11 with significant advantages for high-resolution structural studies and rigorous biophysical/biochemical analysis.


Subject(s)
Bacteriophages/isolation & purification , Bacteriophages/physiology , Chemical Phenomena , DNA Packaging , DNA, Viral , Lactococcus lactis/virology , Adenosine Triphosphatases , Bacteriophages/ultrastructure , Cloning, Molecular , Gene Expression , Models, Molecular , Recombinant Proteins , Spectrum Analysis , Structure-Activity Relationship , Struvite , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/ultrastructure , Virus Assembly
9.
J Phys Chem B ; 124(46): 10337-10344, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33151690

ABSTRACT

Double-stranded DNA is under extreme confinement when packed in phage phi29 with osmotic pressures approaching 60 atm and densities near liquid crystalline. The shape of the capsid determined from experiment is elongated. We consider the effects of the capsid shape and volume on the DNA distribution. We propose simple models for the capsid of phage phi29 to capture volume, shape, and wall flexibility, leading to an accurate DNA density profile. The effect of the packaging motor twisting the DNA on the resulting density distribution has been explored. We find packing motor induced twisting leads to a greater numbers of defects formed. The emergence of defects such as bubbles or large roll angles along the DNA shows a sequence dependence, and the resulting flexibility leads to an inhomogeneous distribution of defects occurring more often at TpA steps and AT-rich regions. In conjunction with capsid elongation, this has effects on the global DNA packing structures.


Subject(s)
Bacillus Phages/genetics , Capsid , DNA Packaging , DNA, Viral , Capsid Proteins/genetics , DNA, Viral/genetics , Nucleic Acid Conformation
10.
Nucleic Acids Res ; 48(20): 11737-11749, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33089330

ABSTRACT

Double-stranded DNA viruses use ATP-powered molecular motors to package their genomic DNA. To ensure efficient genome encapsidation, these motors regulate functional transitions between initiation, translocation, and termination modes. Here, we report structural and biophysical analyses of the C-terminal domain of the bacteriophage phi29 ATPase (CTD) that suggest a structural basis for these functional transitions. Sedimentation experiments show that the inter-domain linker in the full-length protein promotes oligomerization and thus may play a role in assembly of the functional motor. The NMR solution structure of the CTD indicates it is a vestigial nuclease domain that likely evolved from conserved nuclease domains in phage terminases. Despite the loss of nuclease activity, fluorescence binding assays confirm the CTD retains its DNA binding capabilities and fitting the CTD into cryoEM density of the phi29 motor shows that the CTD directly binds DNA. However, the interacting residues differ from those identified by NMR titration in solution, suggesting that packaging motors undergo conformational changes to transition between initiation, translocation, and termination. Taken together, these results provide insight into the evolution of functional transitions in viral dsDNA packaging motors.


Subject(s)
DNA Packaging , DNA, Viral/metabolism , DNA-Binding Proteins/chemistry , Viral Genome Packaging , Viral Proteins/chemistry , Bacillus Phages/chemistry , Bacillus Phages/genetics , Cryoelectron Microscopy , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Esterases/chemistry , Evolution, Molecular , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Domains , RNA, Viral/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
11.
Nature ; 585(7825): 414-419, 2020 09.
Article in English | MEDLINE | ID: mdl-32641828

ABSTRACT

Zika virus (ZIKV) belongs to the family Flaviviridae, and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurological disorders and replicates efficiently in reproductive tissues1-3. Here we show that the envelope protein (E) of ZIKV is polyubiquitinated by the E3 ubiquitin ligase TRIM7 through Lys63 (K63)-linked polyubiquitination. Accordingly, ZIKV replicates less efficiently in the brain and reproductive tissues of Trim7-/- mice. Ubiquitinated E is present on infectious virions of ZIKV when they are released from specific cell types, and enhances virus attachment and entry into cells. Specifically, K63-linked polyubiquitin chains directly interact with the TIM1 (also known as HAVCR1) receptor of host cells, which enhances virus entry in cells as well as in brain tissue in vivo. Recombinant ZIKV mutants that lack ubiquitination are attenuated in human cells and in wild-type mice, but not in live mosquitoes. Monoclonal antibodies against K63-linked polyubiquitin specifically neutralize ZIKV and reduce viraemia in mice. Our results demonstrate that the ubiquitination of ZIKV E is an important determinant of virus entry, tropism and pathogenesis.


Subject(s)
Ubiquitination , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Virus Internalization , Zika Virus/metabolism , Zika Virus/pathogenicity , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Brain/metabolism , Cell Line , Culicidae/cytology , Culicidae/virology , Endosomes/metabolism , Female , Hepatitis A Virus Cellular Receptor 1/metabolism , Humans , Male , Membrane Fusion , Mice , Organ Specificity , Polyubiquitin/immunology , Polyubiquitin/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Tropism , Viremia/immunology , Viremia/prevention & control , Viremia/virology , Virus Replication , Zika Virus/chemistry , Zika Virus/genetics , Zika Virus Infection/prevention & control , Zika Virus Infection/virology
12.
Nat Commun ; 11(1): 3112, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561757

ABSTRACT

Previous flavivirus (dengue and Zika viruses) studies showed largely spherical particles either with smooth or bumpy surfaces. Here, we demonstrate flavivirus particles have high structural plasticity by the induction of a non-spherical morphology at elevated temperatures: the club-shaped particle (clubSP), which contains a cylindrical tail and a disc-like head. Complex formation of DENV and ZIKV with Fab C10 stabilize the viruses allowing cryoEM structural determination to ~10 Å resolution. The caterpillar-shaped (catSP) Fab C10:ZIKV complex shows Fabs locking the E protein raft structure containing three E dimers. However, compared to the original spherical structure, the rafts have rotated relative to each other. The helical tail structure of Fab C10:DENV3 clubSP showed although the Fab locked an E protein dimer, the dimers have shifted laterally. Morphological diversity, including clubSP and the previously identified bumpy and smooth-surfaced spherical particles, may help flavivirus survival and immune evasion.


Subject(s)
Antibodies, Viral/metabolism , Dengue Virus/ultrastructure , Viral Envelope Proteins/metabolism , Zika Virus/ultrastructure , Aedes , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Viral/immunology , Cell Line , Cryoelectron Microscopy , Dengue/immunology , Dengue/therapy , Dengue/virology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue Virus/metabolism , Immune Evasion , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Mesocricetus , Protein Multimerization , Surface Properties , Viral Envelope Proteins/immunology , Viral Envelope Proteins/ultrastructure , Virus Attachment , Zika Virus/immunology , Zika Virus/metabolism , Zika Virus Infection
13.
Nat Commun ; 11(1): 895, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060358

ABSTRACT

Structures of flavivirus (dengue virus and Zika virus) particles are known to near-atomic resolution and show detailed structure and arrangement of their surface proteins (E and prM in immature virus or M in mature virus). By contrast, the arrangement of the capsid proteins:RNA complex, which forms the core of the particle, is poorly understood, likely due to inherent dynamics. Here, we stabilize immature Zika virus via an antibody that binds across the E and prM proteins, resulting in a subnanometer resolution structure of capsid proteins within the virus particle. Fitting of the capsid protein into densities shows the presence of a helix previously thought to be removed via proteolysis. This structure illuminates capsid protein quaternary organization, including its orientation relative to the lipid membrane and the genomic RNA, and its interactions with the transmembrane regions of the surface proteins. Results show the capsid protein plays a central role in the flavivirus assembly process.


Subject(s)
Capsid Proteins/metabolism , Virus Assembly , Zika Virus Infection/virology , Zika Virus/physiology , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/chemistry , Capsid Proteins/genetics , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , Zika Virus/chemistry , Zika Virus/genetics
14.
Proc Natl Acad Sci U S A ; 115(31): 7961-7966, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30012596

ABSTRACT

Subunits in multimeric ring-shaped motors must coordinate their activities to ensure correct and efficient performance of their mechanical tasks. Here, we study WT and arginine finger mutants of the pentameric bacteriophage φ29 DNA packaging motor. Our results reveal the molecular interactions necessary for the coordination of ADP-ATP exchange and ATP hydrolysis of the motor's biphasic mechanochemical cycle. We show that two distinct regulatory mechanisms determine this coordination. In the first mechanism, the DNA up-regulates a single subunit's catalytic activity, transforming it into a global regulator that initiates the nucleotide exchange phase and the hydrolysis phase. In the second, an arginine finger in each subunit promotes ADP-ATP exchange and ATP hydrolysis of its neighbor. Accordingly, we suggest that the subunits perform the roles described for GDP exchange factors and GTPase-activating proteins observed in small GTPases. We propose that these mechanisms are fundamental to intersubunit coordination and are likely present in other ring ATPases.


Subject(s)
Adenosine Triphosphatases , Bacillus Phages/enzymology , Models, Biological , Viral Proteins , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism
16.
Cell Rep ; 14(8): 2017-2029, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26904950

ABSTRACT

Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate.


Subject(s)
Adenosine Triphosphatases/chemistry , Bacillus Phages/ultrastructure , DNA, Viral/chemistry , DNA/chemistry , Protein Subunits/chemistry , Viral Proteins/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/chemistry , Arginine/chemistry , Bacillus Phages/genetics , Bacillus Phages/metabolism , Bacillus subtilis/virology , Capsid/metabolism , Capsid/ultrastructure , Cryoelectron Microscopy , Crystallography, X-Ray , DNA/genetics , DNA/metabolism , DNA Packaging , DNA, Viral/genetics , DNA, Viral/metabolism , Gene Expression , Hydrolysis , Models, Molecular , Protein Domains , Protein Structure, Secondary , Protein Subunits/genetics , Protein Subunits/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Assembly
17.
Virology ; 474: 105-9, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25463608

ABSTRACT

The structure and assembly of many icosahedral and helical viruses are well-characterized. However, the molecular basis for the unique spindle-shaped morphology of many viruses that infect Archaea remains unknown. To understand the architecture and assembly of these viruses, the spindle-shaped virus SSV1 was examined using cryo-EM, providing the first 3D-structure of a spindle-shaped virus as well as insight into SSV1 biology, assembly and evolution. Furthermore, a geometric framework underlying the distinct spindle-shaped structure is proposed.


Subject(s)
Fuselloviridae/ultrastructure , Archaea/virology , Computer Simulation , Cryoelectron Microscopy , Evolution, Molecular , Fuselloviridae/genetics , Fuselloviridae/physiology , Imaging, Three-Dimensional , Models, Molecular , Virion/ultrastructure , Virus Assembly
18.
J Virol ; 88(8): 3986-96, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24403593

ABSTRACT

UNLABELLED: The tailed double-stranded DNA (dsDNA) bacteriophage 29 packages its 19.3-kbp genome into a preassembled procapsid structure by using a transiently assembled phage-encoded molecular motor. This process is remarkable considering that compaction of DNA to near-crystalline densities within the confined space of the capsid requires that the packaging motor work against significant entropic, enthalpic, and DNA-bending energies. The motor consists of three phage-encoded components: the dodecameric connector protein gp10, an oligomeric RNA molecule known as the prohead RNA (pRNA), and the homomeric ring ATPase gp16. Although atomic resolution structures of the connector and different pRNA subdomains have been determined, the mechanism of self-assembly and the resulting stoichiometry of the various motor components on the phage capsid have been the subject of considerable controversy. Here a subnanometer asymmetric cryoelectron microscopy (cryo-EM) reconstruction of a connector-pRNA complex at a unique vertex of the procapsid conclusively demonstrates the pentameric symmetry of the pRNA and illuminates the relative arrangement of the connector and the pRNA. Additionally, a combination of biochemical and cryo-EM analyses of motor assembly intermediates suggests a sequence of molecular events that constitute the pathway by which the motor assembles on the head, thereby reconciling conflicting data regarding pRNA assembly and stoichiometry. Taken together, these data provide new insight into the assembly, structure, and mechanism of a complex molecular machine. IMPORTANCE: Viruses consist of a protein shell, or capsid, that protects and surrounds their genetic material. Thus, genome encapsidation is a fundamental and essential step in the life cycle of any virus. In dsDNA viruses, powerful molecular motors essentially pump the viral DNA into a preformed protein shell. This article describes how a viral dsDNA packaging motor self-assembles on the viral capsid and provides insight into its mechanism of action.


Subject(s)
Bacillus Phages/physiology , Bacillus subtilis/virology , DNA Packaging , DNA, Viral/metabolism , DNA/metabolism , Viral Proteins/metabolism , Virus Assembly , Bacillus Phages/chemistry , Bacillus Phages/genetics , DNA/genetics , DNA, Viral/genetics , Protein Multimerization , Viral Proteins/chemistry , Viral Proteins/genetics
19.
Bioinformatics ; 28(24): 3265-73, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23131460

ABSTRACT

MOTIVATION: Owing to the size and complexity of large multi-component biological assemblies, the most tractable approach to determining their atomic structure is often to fit high-resolution radiographic or nuclear magnetic resonance structures of isolated components into lower resolution electron density maps of the larger assembly obtained using cryo-electron microscopy (cryo-EM). This hybrid approach to structure determination requires that an atomic resolution structure of each component, or a suitable homolog, is available. If neither is available, then the amount of structural information regarding that component is limited by the resolution of the cryo-EM map. However, even if a suitable homolog cannot be identified using sequence analysis, a search for structural homologs should still be performed because structural homology often persists throughout evolution even when sequence homology is undetectable, As macromolecules can often be described as a collection of independently folded domains, one way of searching for structural homologs would be to systematically fit representative domain structures from a protein domain database into the medium/low resolution cryo-EM map and return the best fits. Taken together, the best fitting non-overlapping structures would constitute a 'mosaic' backbone model of the assembly that could aid map interpretation and illuminate biological function. RESULT: Using the computational principles of the Scale-Invariant Feature Transform (SIFT), we have developed FOLD-EM-a computational tool that can identify folded macromolecular domains in medium to low resolution (4-15 Å) electron density maps and return a model of the constituent polypeptides in a fully automated fashion. As a by-product, FOLD-EM can also do flexible multi-domain fitting that may provide insight into conformational changes that occur in macromolecular assemblies.


Subject(s)
Cryoelectron Microscopy , Models, Molecular , Protein Structure, Tertiary , Software , Algorithms , Chaperonin 60/chemistry , Databases, Protein , Electrons , Macromolecular Substances/chemistry , Molecular Docking Simulation , Protein Folding , Structural Homology, Protein
20.
Nucleic Acids Res ; 40(19): 9953-63, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22879380

ABSTRACT

Bacteriophage DNA packaging motors translocate their genomic DNA into viral heads, compacting it to near-crystalline density. The Bacillus subtilis phage 29 has a unique ring of RNA (pRNA) that is an essential component of its motor, serving as a scaffold for the packaging ATPase. Previously, deletion of a three-base bulge (18-CCA-20) in the pRNA A-helix was shown to abolish packaging activity. Here, we solved the structure of this crucial bulge by nuclear magnetic resonance (NMR) using a 27mer RNA fragment containing the bulge (27b). The bulge actually involves five nucleotides (17-UCCA-20 and A100), as U17 and A100 are not base paired as predicted. Mutational analysis showed these newly identified bulge residues are important for DNA packaging. The bulge introduces a 33-35° bend in the helical axis, and inter-helical motion around this bend appears to be restricted. A model of the functional 120b pRNA was generated using a 27b NMR structure and the crystal structure of the 66b prohead-binding domain. Fitting this model into a cryo-EM map generated a pentameric pRNA structure; five helices projecting from the pRNA ring resemble an RNA claw. Biochemical analysis suggested that this shape is important for coordinated motor action required for DNA translocation.


Subject(s)
Bacillus Phages/genetics , DNA Packaging , RNA, Viral/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Bacillus Phages/enzymology , Base Sequence , Models, Molecular , Molecular Sequence Data , Mutation , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL