Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nanomedicine (Lond) ; 19(5): 397-412, 2024 02.
Article in English | MEDLINE | ID: mdl-38112257

ABSTRACT

Aim: This report proposes using the Hill model to assess the benchmark dose, the 50% lethal dose, the cooperativity and the dissociation constant while analyzing cell viability data using nanomaterials to evaluate the antitumor potential while combined with radiofrequency therapy. Materials & methods: A nanocomposite was synthesized (graphene oxide-polyethyleneimine-gold) and the viability was evaluated using two tumor cell lines, namely LLC-WRC-256 and B16-F10. Results: Our findings demonstrated that while the nanocomposite is biocompatible against the LLC-WRC-256 and B16-F10 cancer cell lines in the absence of radiofrequency, the application of radiofrequency enhances the cell toxicity by orders of magnitude. Conclusion: This result points to prospective studies with the tested cell lines using tumor animal models.


Subject(s)
Graphite , Nanocomposites , Animals , Prospective Studies , Cell Line, Tumor , Graphite/pharmacology , Nanocomposites/therapeutic use
2.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364524

ABSTRACT

The present review describes our long experience in the application of Mössbauer spectroscopy with a high velocity resolution (a high discretization of the velocity reference signal) in the studies of various nanosized and nanostructured iron-containing materials. The results reviewed discuss investigations of: (I) nanosized iron cores in: (i) extracted ferritin, (ii) ferritin in liver and spleen tissues in normal and pathological cases, (iii) ferritin in bacteria, (iv) pharmaceutical ferritin analogues; (II) nanoparticles developed for magnetic fluids for medical purposes; (III) nanoparticles and nanostructured FINEMET alloys developed for technical purposes. The results obtained demonstrate that the high velocity resolution Mössbauer spectroscopy permits to excavate more information and to extract more spectral components in the complex Mössbauer spectra with overlapped components, in comparison with those obtained by using conventional Mössbauer spectroscopy. This review also shows the advances of Mössbauer spectroscopy with a high velocity resolution in the study of various iron-based nanosized and nanostructured materials since 2005.

3.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35159758

ABSTRACT

The paper reports on a new mathematical model, starting with the original Hill equation which is derived to describe cell viability (V) while testing nanomaterials (NMs). Key information on the sample's morphology, such as mean size (⟨s⟩) and size dispersity (σ) is included in the new model via the lognormal distribution function. The new Hill-inspired equation is successfully used to fit MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) data from assays performed with the HepG2 cell line challenged by fluorine-containing graphene quantum dots (F:GQDs) under light (400-700 nm wavelength) and dark conditions. The extracted "biological polydispersity" (light: ⟨sMTT⟩=1.77±0.02 nm and σMTT=0.21±0.02); dark: ⟨sMTT⟩=1.87±0.02 nm and σMTT=0.22±0.01) is compared with the "morphological polydispersity" (⟨sTEM⟩=1.98±0.06 nm and σTEM=0.19±0.03), the latter obtained from TEM (transmission electron microscopy). The fitted data are then used to simulate a series of V responses. Two aspects are emphasized in the simulations: (i) fixing σ, one simulates V versus ⟨s⟩ and (ii) fixing ⟨s⟩, one simulates V versus σ. Trends observed in the simulations are supported by a phenomenological model picture describing the monotonic reduction in V as ⟨s⟩ increases (V~pa/(s)p-a; p and a are fitting parameters) and accounting for two opposite trends of V versus σ: under light (V~σ) and under dark (V~1/σ).

4.
Int J Pharm ; 596: 120234, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33484926

ABSTRACT

Segesterone acetate (SA) is a promising and recently approved drug substance used as a contraceptive. SA has two major polymorphic forms, Form I and II. We have shown through indirect analysis that Form I is the more thermodynamically stable polymorphic form at room temperature, however, during the manufacturing process of SA drug products the solid-state stability must be shown to be under control. In the present work, a systematic study has been done using X-ray powder diffraction (XRPD), Fourier Transformed Infrared spectroscopy (FT-IR), and room temperature Raman spectroscopy on both micronized and non-micronized SA powder samples. XRPD showed a crystalline structure in both powder samples with a distinct coexistence of the polymorphic Forms I and II which was confirmed by FT-IR and Raman spectroscopy. The study showed that after thermal annealing a noticeable reduction of the amount of polymorphic Form II was found in both samples. Our results suggest the possibility of reducing the amount of SA Form II by thermal treatment inducing an irreversible solid-state transition to yield the thermodynamically more stable polymorphic Form I. To quantify the ratio of polymorphs I and II we have implemented a method that can be used as a routine analysis step in the manufacturing process of SA.


Subject(s)
Spectrum Analysis, Raman , Calorimetry, Differential Scanning , Drug Combinations , Ethinyl Estradiol , Powders , Pregnenediones , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
5.
ACS Appl Bio Mater ; 4(3): 2798-2809, 2021 03 15.
Article in English | MEDLINE | ID: mdl-35014319

ABSTRACT

A single-atom metal doped on carbonaceous nanomaterials has attracted increasing attention due to its potential applications as high-performance catalysts. However, few studies focus on the applications of such nanomaterials as nanotheranostics for simultaneous bioimaging and cancer therapy. Herein, it is pioneeringly demonstrated that the single-atom Gd anchored onto graphene quantum dots (SAGd-GQDs), with dendrite-like morphology, was successfully prepared. More importantly, the as-fabricated SAGd-GQDs exhibits a robustly enhanced longitudinal relaxivity (r1 = 86.08 mM-1 s-1) at a low Gd3+ concentration of 2 µmol kg-1, which is 25 times higher than the commercial Gd-DTPA (r1 = 3.44 mM-1 s-1). In vitro and in vivo studies suggest that the obtained SAGd-GQDs is a highly potent and contrast agent to obtain high-definition MRI, thereby opening up more opportunities for future precise clinical theranostics.


Subject(s)
Biocompatible Materials/chemistry , Gadolinium/chemistry , Graphite/chemistry , Magnetic Resonance Imaging , Quantum Dots/chemistry , Animals , Hep G2 Cells , Humans , Liver Neoplasms, Experimental/diagnostic imaging , Materials Testing , Mice , Particle Size
6.
Phys Chem Chem Phys ; 22(37): 21042-21058, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32926060

ABSTRACT

The as-prepared (MSE-NCs sample) and lyophilized (LMSE-NCs sample) polylactic-co-glicolic acid (PLGA) nanocapsules loaded with maghemite (γ-Fe2O3) nanoparticles and selol (Se-based anticancer drug) were investigated by means of dc magnetization, ac susceptibility and electron spin resonance (ESR) measurements over the temperature range of 4-300 K. The magnetic data of the as-synthesized nanocapsules containing only maghemite nanoparticles (M-NCs sample) or selol (SE-NCs sample) were also collected for comparison. The magnetic nanocapsules reveal perfect superparamagnetic (SPM) behavior only around room temperature; at temperatures lower than 200 K the SPM scaling is not observed and all samples behave as interacting superparamagnetic (ISPM) materials. The evolution from the ISPM to the SPM regime is marked by a steady decrease in the hysteretic properties of all samples, with the temperature dependence of the coercivity decreasing slower than the T1/2 behavior predicted for non-interacting SPM particles. The SPM character of the samples is also confirmed by the occurrence of a maximum in the temperature dependence of both real χ'(T) and imaginary χ''(T) components of the ac magnetic susceptibility, which shifts towards higher temperatures with increasing frequency. Moreover, upon decreasing the temperature the ESR signal shifts to lower fields and gradually broadens, following closely the predictions for the ESR of SPM particles. Additionally, an unusual giant diamagnetic response is observed at low temperatures. The ZFC magnetization is found to reverse its direction and becomes diamagnetic, whereas the FC branch remains positive. Even when compared with usual superconductors, the order of the diamagnetic susceptibility for the lyophilized sample (-10-2 emu g-1 Oe-1) is quite considerable. The nanocapsules herein reported and the presented analysis of their magnetic properties we envisage can support the engineering of magnetic nanocapsules for applications in magnetic drug delivery systems and as magnetic hyperthermia inductors in antitumor therapy.


Subject(s)
Drug Carriers/chemistry , Ferric Compounds/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Nanocapsules/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Selenium Compounds/chemistry , Antineoplastic Agents/chemistry , Magnetic Phenomena , Temperature
7.
Phys Chem Chem Phys ; 20(41): 26696-26709, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30324204

ABSTRACT

This study reports on investigation of the magnetic properties of layer-by-layer (LbL) assembled nanofilms comprising polyvinyl alcohol (PVA) and citrate-coated magnetite (cit-MAG) nanoparticles deposited onto silicon (SF sample) and glass (GF sample) substrates. DC magnetization measurements were performed over the temperature range of 4 K to 300 K, in the applied magnetic field range of ±60 kOe. The magnetic data of the as-synthesized cit-MAG nanoparticles (F sample) are also collected for comparison. The three as-fabricated samples reveal perfect superparamagnetic (SPM) behavior only around room temperature; at temperatures lower than 200 K the SPM scaling is not observed and all samples behave as interacting superparamagnetic (ISPM) materials. The evolution from the ISPM to the SPM regime is marked by a steady decrease in the hysteretic properties of all samples, with the temperature-dependence of the coercivity decreasing slower than the T1/2 behavior predicted for non-interacting superparamagnetic particles. The modified Bloch's law used to assess information on nanoparticles' surface spins gives the Bloch's exponent close to 2 (for the F and SF samples) and close to 1 (for the GF sample). Interestingly, the surface spin freezing temperature (Tf) is 8 ± 1 K for all samples. The magnetic behavior of all three samples can be described within the model picture of a core-shell structure for the cit-MAG nanoparticles; the core comprising magnetically-ordered spins whereas the shell behaving as a spin-glass-like system. However, the contribution of the shell magnetism to the effective magnetic properties is much more evident in the GF sample in which magnetic dipole-dipole interaction is three-times weaker than in the SF sample and two times weaker than in the F sample. In contrast, the strong magnetic dipole-dipole interaction in the SF sample affects the surface spins, hindering the onset of magnetically-ordered regions in the nanoparticle's shell, making the surface magnetism contribution negligible. The LbL-fabricated nanofilms herein reported and the presented analysis of their magnetic properties we envisage can support the engineering of magnetic nanofilms for multiple applications.

8.
Free Radic Res ; 52(3): 351-361, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29308684

ABSTRACT

Fever is a regulated increase in body temperature and a component of the acute-phase response, triggered mainly after the invasion of pathogens in the body. Reactive oxygen species (ROS) are generated during the physiological and pathological processes, and can act as both signalling molecules as well as promoters of oxidative stress. Male Wistar rats, pretreated with oral doses of acetaminophen, celecoxib, dipyrone, or ibuprofen 30 min before an intravenous lipopolysaccharide (LPS) or sterile saline injection, showed a reduced febrile response in all animals tested. The formation of ROS in the fresh blood, liver, brown adipose tissue (BAT), and hypothalamus of febrile and antipyretic-treated animals was assessed by electron paramagnetic resonance using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH). While the CM• concentrations remained unaltered in the blood samples examined 5 h after the induction of fever, we found increased CM• levels in the liver (in µM, saline: 290 ± 42; LPS: 512 ± 34), BAT (in µM, saline: 509 ± 79, LPS: 855 ± 79), and hypothalamus (in µM, saline: 292 ± 35; LPS: 467 ± 8) at the same time point. Importantly, none of the antipyretics were seen to alter the CM• accumulation profile. Data from this study suggest that there is an increased formation of ROS in the different tissues during fever, which may cause oxidative stress, and that the antipyretics tested do not interfere with ROS production.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Fever/chemically induced , Lipopolysaccharides/adverse effects , Reactive Oxygen Species/blood , Animals , Male , Oxidative Stress , Rats , Rats, Wistar
9.
Phys Chem Chem Phys ; 19(2): 1158-1166, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27942619

ABSTRACT

We study the effect of Co co-doping on the optical properties of Mn-doped ZnTe nanocrystals (NCs) embedded in a glass matrix. Optical absorption (OA) and crystal field theory strongly indicated the substitutional incorporation of Co2+ ions into these semiconducting NCs as well as the characteristic transitions of these ions in the visible and near infrared spectral region. Transmission electron microscopy (TEM) images revealed an invariant NC lattice parameter with the incorporation of Mn2+ and Co2+ ions. The same was confirmed by X-ray diffraction (XRD). The photoluminescence (PL) spectra showed that the characteristic emission bands of Co2+ ions (E1Co2+ and E2Co2+) are intense and evident at low temperatures. Indeed, Raman spectra showed that the dependence of luminescence intensity on temperature is due to the electron-phonon interaction that arises from multiphonon relaxation processes. The redshifts in the PL spectra from green to orange with the incorporation of Mn2+ ions into ZnTe NCs, and in the near infrared with increasing Co-concentration, result from sp-d exchange interactions associated with the increase in Mn2+ and Co2+ ions in tetrahedral sites of ZnTe NCs, which may be very interesting for applications in luminescent devices. These observations provide strong evidence that higher Co-concentrations inhibit the incorporation of Mn2+ into ZnTe NCs, suggesting that there may be competition between Co2+ and Mn2+ ions substituting Zn2+ ions and, furthermore, that these ions replace zinc vacancies (VZn) in these NCs.

10.
ACS Nano ; 8(2): 1913-22, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24460449

ABSTRACT

In this study, we report on the synthesis of CdSe/CdS core-shell ultrasmall quantum dots (CS-USQDs) using an aqueous-based wet chemistry protocol. The proposed chemical route uses increasing concentration of 1-thioglycerol to grow the CdS shell on top of the as-precipitated CdSe core in a controllable way. We found that lower concentration of 1-thioglycerol (3 mmol) added into the reaction medium limits the growth of the CdSe core, and higher and increasing concentration (5-11 mmol) of 1-thioglycerol promotes the growth of CdS shell on top of the CdSe core in a very controllable way, with an increase from 0.50 to 1.25 nm in shell thickness. The growth of CS-USQDs of CdSe/CdS was confirmed by using different experimental techniques, such as optical absorption (OA) spectroscopy, fluorescence spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Data collected from OA were used to obtain the average values of the CdSe core diameter, whereas Raman data were used to assess the average values of the CdSe core diameter and CdS shell thicknesses.

11.
Phys Chem Chem Phys ; 15(45): 19853-61, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24145704

ABSTRACT

Multilayered nanocomposite films (thickness 50-90 nm) of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm) were deposited on top of interdigitated microelectrodes by the layer-by-layer technique in order to study their dielectric properties. For that purpose, two different types of nanocomposite films were prepared by assembling np-CoFe2O4 either with poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonic acid) or with polyaniline and sulfonated lignin. Despite the different film architectures, the morphology of both was dominated by densely-packed layers of nanoparticles surrounded by polyelectrolytes. The dominant effect of np-CoFe2O4 was also observed after impedance spectroscopy measurements, which revealed that dielectric behavior of the nanocomposites was largely influenced by the charge transport across nanoparticle-polyelectrolyte interfaces. For example, nanocomposites containing np-CoFe2O4 exhibited a single low-frequency relaxation process, with time constants exceeding 15 ms. At 1 kHz, the dielectric constant and the dissipation factor (tan δ) of these nanocomposites were 15 and 0.15, respectively. These values are substantially inferior to those reported for pressed pellets made exclusively of similar nanoparticles. Impedance data were further fitted with equivalent circuit models from which individual contributions of particle's bulk and interfaces to the charge transport within the nanocomposites could be evaluated. The present study evidences that such nanocomposites display a dielectric behavior dissimilar from that exhibited by their individual counterparts much likely due to enlarged nanoparticle-polyelectrolyte interfaces.


Subject(s)
Cobalt/chemistry , Ferric Compounds/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Electric Impedance , Electrodes , Electron Transport
12.
Article in English | MEDLINE | ID: mdl-23450821

ABSTRACT

BACKGROUND: This paper introduces a new nanoformulation of 5-aminolevulinic acid (nano-ALA) as well as a novel quantitative approach towards evaluating field cancerization for actinic keratosis and/or skin photodamage. In this pilot study, we evaluated field cancerization using nano-ALA and methyl aminolevulinate (MAL), the latter being commercialized as Metvix(®). METHODS AND RESULTS: Photodynamic therapy was used for the treatment of patients with selected skin lesions, whereas the fluorescence of the corresponding photosensitizer was used to evaluate the time evolution of field cancerization in a quantitative way. Field cancerization was quantified using newly developed color image segmentation software. Using photodynamic therapy as the precancer skin treatment and the approach introduced herein for evaluation of fluorescent area, we found that the half-life of field cancerization reduction was 43.3 days and 34.3 days for nano-ALA and MAL, respectively. We also found that nano-ALA targeted about 45% more skin lesion areas than MAL. Further, we found the mean reduction in area of skin field cancerization was about 10% greater for nano-ALA than for MAL. CONCLUSION: Although preliminary, our findings indicate that the efficacy of nano-ALA in treating skin field cancerization is higher than that of MAL.

13.
Int J Nanomedicine ; 7: 5287-99, 2012.
Article in English | MEDLINE | ID: mdl-23055734

ABSTRACT

Antitumor activities have been described in selol, a hydrophobic mixture of molecules containing selenium in their structure, and also in maghemite magnetic nanoparticles (MNPs). Both selol and MNPs were co-encapsulated within poly(lactic-co-glycolic acid) (PLGA) nanocapsules for therapeutic purposes. The PLGA-nanocapsules loaded with MNPs and selol were labeled MSE-NC and characterized by transmission and scanning electron microscopy, electrophoretic mobility, photon correlation spectroscopy, presenting a monodisperse profile, and positive charge. The antitumor effect of MSE-NC was evaluated using normal (MCF-10A) and neoplastic (4T1 and MCF-7) breast cell lines. Nanocapsules containing only MNPs or selol were used as control. MTT assay showed that the cytotoxicity induced by MSE-NC was dose and time dependent. Normal cells were less affected than tumor cells. Cell death occurred mainly by apoptosis. Further exposure of MSE-NC treated neoplastic breast cells to an alternating magnetic field increased the antitumor effect of MSE-NC. It was concluded that selol-loaded magnetic PLGA-nanocapsules (MSE-NC) represent an effective magnetic material platform to promote magnetohyperthermia and thus a potential system for antitumor therapy.


Subject(s)
Breast Neoplasms/therapy , Hyperthermia, Induced/methods , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Nanocapsules/chemistry , Nanocapsules/therapeutic use , Selenium Compounds/administration & dosage , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Combined Modality Therapy , Female , Magnetite Nanoparticles/ultrastructure , Mice , Nanocapsules/ultrastructure , Treatment Outcome
14.
J Nanosci Nanotechnol ; 12(8): 6672-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22962805

ABSTRACT

In this study we report an experimental approach capable of tuning dipolar interactions in hybrid magnetic nanofilms produced via layer-by-layer assembly of positively-charged maghemite nanoparticles and sodium sulfonated polystyrene onto glass and silicon substrates. Morphological and magnetic properties of the as prepared nanofilms were determined by Raman spectroscopy, atomic force microscopy, conventional and SQUID magnetometry. Maghemite nanoparticles form densely packed layers with voids between particles being filled by polymeric material as observed in atomic force microscopy images. Magnetic hysteresis loops and zero-field-cooled/field-cooled magnetization curves reveal a superparamagnetic behavior at room temperature. The energy barrier for the magnetic moment reversal of the nanofilms has been determined from the frequency dependent ac susceptibility and is related to the gamma-Fe2O3 nanoparticles concentration used in the colloidal dispersion throughout film fabrication. Variations on the interparticle distances have a direct effect on the interparticle dipolar interactions. A less concentrated colloid gives rise to large separated nanoparticles inside the nanofilm with a consequent reduction on the energy barrier for the magnetic moment reversal. The fabrication process exploring the control of the nanoparticle concentration can thus be used to tune the magnetic dipolar interactions in the nanofilms.

15.
J Photochem Photobiol B ; 115: 1-4, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-22854225

ABSTRACT

The aims of this study were two fold; to develop magnetoliposomes (MLs) loaded with zinc phthalocyanine (ZnPc) complexed with cucurbituril (CB) (CB:ZnPc-MLs) and to evaluate their in vitro photodynamic (PD) and/or hyperthermia (HT) effects while using melanoma cells (B16-F10) as model. The liposomal formulations were characterized by both average diameter and zeta potential. The vesicle average size ranged from 150 to 200 nm and the polydispersity index (PdI) from 0.093 to 0.230. The zeta potential was significantly positive with values between 48 and 57 mV. The cell viability (CV) after PD and HT treatments was assessed by colorimetric MTT method. Melanoma cells were initially treated with the liposome formulation without light and magnetic field application, revealing cell viability not different from the control cells (p>0.05). Photodynamic and hyperthermia assays were also applied separately, demonstrating that PD is more effective than HT in reducing the CV of the neoplastic cells. Combined application of both PD and HT treatments was even more effective in reducing the CV of B16-F10 cells. At the highest light dose (2 J/cm(2)) and under magnetic field activation the CV was about half than PD applied alone. Therefore, the use of the photosensitizer-loaded magnetoliposome for combined photodynamic therapy (PDT) and magnetohyperthermia (MHT) application can be considered as a potential tool to treat malignant melanoma.


Subject(s)
Bridged-Ring Compounds/chemistry , Hyperthermia, Induced/methods , Imidazoles/chemistry , Indoles/administration & dosage , Indoles/pharmacology , Magnetic Fields , Melanoma, Experimental/therapy , Organometallic Compounds/administration & dosage , Organometallic Compounds/pharmacology , Photochemotherapy/methods , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Ferric Compounds/chemistry , Indoles/chemistry , Indoles/therapeutic use , Isoindoles , Light , Liposomes , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Nanoparticles/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/therapeutic use , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Zinc Compounds
16.
J Biomed Nanotechnol ; 8(2): 301-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22515081

ABSTRACT

Magnetic resonance is used to investigate biodistribution aspects of dextran-coated magnetite nanoparticles (9.4 nm core diameter) in both liver and spleen from 5 minutes up to 6 months after intravenous administration of a magnetic fluid sample in female Swiss mice. Using magnetic resonance data important parameters such as the absorption half-life (t 1/2 = 12 +/- 2 min in the liver and t 1/2 = 11 +/- 2 min in the spleen), the peak time (1.7 +/- 0.2 h in the liver and 1.9 +/- 0.2 h in the spleen), and the disposition half-life of the dextran-coated magnetite nanoparticles in mice organs (t 1/2 = 70 +/- 10 h in the liver and t 1/2 = 32 +/- 7 h in the spleen) were assessed. In addition, light and electron microscopy showed several aspects that may be related to the iron metabolism. Microscopic analysis also revealed that although magnetite nanoparticles or iron released from them are retained in the organism for a long period of time, no morphologic alteration is induced by the intravenous administration of the magnetic fluid sample, evidencing its biocompatibility. The used tests may represent an adequate methodology for nanotoxicology evaluation.


Subject(s)
Dextrans/pharmacokinetics , Drug Carriers/pharmacokinetics , Magnetite Nanoparticles/chemistry , Animals , Dextrans/chemistry , Drug Carriers/chemistry , Female , Histocytochemistry , Injections, Intravenous , Liver/metabolism , Magnetic Resonance Spectroscopy , Mice , Microscopy, Electron , Models, Animal , Particle Size , Photomicrography , Spleen/metabolism , Tissue Distribution
17.
Nanoscale Res Lett ; 7(1): 167, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22390618

ABSTRACT

The low-field (below 5 Oe) ac and dc magnetic response of a magnetic fluid [MF] sample in the range of 305 to 360 K and 410 to 455 K was experimentally and theoretically investigated. We found a systematic deviation of Curie's law, which predicts a linear temperature dependence of inverse initial susceptibility in the range of our investigation. This finding, as we hypothesized, is due to the onset of a second-order-like cluster-to-monomer transition with a critical exponent which is equal to 0.50. The susceptibility data were well fitted by a modified Langevin function, in which cluster dissociation into monomers, at the critical temperature [T*], was included. In the ac experiments, we found that T* was reducing from 381.8 to 380.4 K as the frequency of the applied field increases from 123 to 173 Hz. In addition, our ac experiments confirm that only monomers respond for the magnetic behavior of the MF sample above T*. Furthermore, our Monte Carlo simulation and analytical results support the hypothesis of a thermal-assisted dissociation of chain-like structures.PACS: 75.75.-C; 75.30.Kz; 75.30.Cr.

18.
Phys Chem Chem Phys ; 13(48): 21233-42, 2011 Dec 28.
Article in English | MEDLINE | ID: mdl-22025281

ABSTRACT

The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film thickness increasing from about 20 to 120 nm while shifting from 3 to 10 CoFe(2)O(4)/PSS bilayers, using the 8.9 × 10(-6) (moles of cobalt ferrite per litre) suspension.


Subject(s)
Cobalt/chemistry , Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Quartz Crystal Microbalance Techniques , Adsorption , Alkanesulfonic Acids/chemistry , Colloids/chemistry , Kinetics , Polystyrenes/chemistry
19.
Int J Nanomedicine ; 6: 1709-17, 2011.
Article in English | MEDLINE | ID: mdl-21980234

ABSTRACT

BACKGROUND: The magnetic albumin nanosphere (MAN), encapsulating maghemite nanoparticles, was designed as a magnetic drug delivery system (MDDS) able to perform a variety of biomedical applications. It is noteworthy that MAN was efficient in treating Ehrlich's tumors by the magnetohyperthermia procedure. METHODS AND MATERIALS: In this study, several nanotoxicity tests were systematically carried out in mice from 30 minutes until 30 days after MAN injection to investigate their biocompatibility status. Cytometry analysis, viability tests, micronucleus assay, and histological analysis were performed. RESULTS: Cytometry analysis and viability tests revealed MAN promotes only slight and temporary alterations in the frequency of both leukocyte populations and viable peritoneal cells, respectively. Micronucleus assay showed absolutely no genotoxicity or cytotoxicity effects and histological analysis showed no alterations or even nanoparticle clusters in several investigated organs but, interestingly, revealed the presence of MAN clusters in the central nervous system (CNS). CONCLUSION: The results showed that MAN has desirable in vivo biocompatibility, presenting potential for use as a MDDS, especially in CNS disease therapy.


Subject(s)
Biocompatible Materials/toxicity , Drug Delivery Systems/methods , Magnetite Nanoparticles/toxicity , Serum Albumin, Bovine/toxicity , Analysis of Variance , Animals , Brain Chemistry/drug effects , Cell Survival/drug effects , Female , Flow Cytometry , Histocytochemistry , Leukocyte Count , Leukocytes/drug effects , Materials Testing , Mice , Micronucleus Tests , Nanospheres/toxicity , Toxicity Tests
20.
J Nanosci Nanotechnol ; 11(4): 3604-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21776743

ABSTRACT

This study reports on the development and characterization of bovine serum albumin (BSA) nanospheres containing Silicon(IV) phthalocyanine (NzPc) and/or maghemite nanoparticles (MNP), the latter introduced via ionic magnetic fluid (MF). The nanosized BSA-loaded samples were designed for synergic application while combining Photodynamic Therapy and Hyperthermia. Incorporation of MNP in the albumin-based template, allowing full control of the magnetic content, was accomplished by adding a highly-stable ionic magnetic fluid sample to the albumin suspension, following heat denaturing. The material's evaluation was performed using Zeta potential measurements and scanning electron microscopy. The samples were characterized by steady-state techniques and time-resolved fluorescence. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic drug delivery system.


Subject(s)
Fibroblasts/chemistry , Indoles/chemistry , Magnetite Nanoparticles/chemistry , Nanocapsules/chemistry , Serum Albumin, Bovine/chemistry , Cell Line , Diffusion , Electromagnetic Fields , Equipment Design , Equipment Failure Analysis , Fibroblasts/radiation effects , Humans , Isoindoles , Lasers, Semiconductor , Magnetite Nanoparticles/radiation effects , Nanocapsules/radiation effects , Serum Albumin, Bovine/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...