Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Phys Chem A ; 118(47): 11145-54, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25208241

ABSTRACT

Dioxides of methylthiourea (methylaminoiminomethanesulfinic acid, MAIMSA) and dimethylthiourea (dimethylaminoiminomethanesulfinic acid, DMAIMSA) were synthesized and, together with thiourea dioxide (aminoiminomethanesulfinic acid, AIMSA), were studied with respect to their decompositions and hydrolyses in basic aqueous media. All three were stable in acidic media and existed as zwitterions with the positive charge spread out on the 4-electron 3-center N-C-N skeleton and the negative charge delocalized over the two oxygen atoms. All three are characterized by long and weak C-S bonds that are easily cleaved in polar solvents through a nucleophilic attack on the positively disposed carbon center, followed by cleavage of the C-S bond. The sulfur moiety leaving groups are highly unstable, reducing, and rapidly oxidized to S(IV) as hydrogen sulfite in the presence of oxidant. In aerobic conditions, molecular oxygen is a sufficient and efficient oxidant that can oxidize, at diffusion-controlled limits, the highly reducing sulfur species in one-electron steps, thus opening up a cascade of possibly genotoxic reactive oxygen species, commencing with the superoxide anion radical. Radical formation in these decompositions was confirmed by electron paramagnetic resonance techniques. In strongly basic media, decomposition of the dioxides to yield sulfoxylate (SO2(2-), HSO2(-)) is irreversible and, in anaerobic environments, will disproportionate to yield more stable sulfur species from HS(-) to SO4(2-). Decomposition products were dependent on concentrations of molecular oxygen. Solutions open to the atmosphere, with availability to excess oxygen, gave the urea analogue of the thiourea and sulfate, while in limited oxygen conditions hydrogen sulfite and other mixed oxidation states sulfur oxoanions are obtained. DMAIMSA has the longest C-S bond at 0.188 nm and was the most reactive. MAIMSA, with the shortest at 0.186 nm, was the least reactive. Electrospray ionization-mass spectrometry data managed to detect all of the formerly postulated intermediates.


Subject(s)
Thiourea/analogs & derivatives , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Oxygen/chemistry , Thiourea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...