Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Front Immunol ; 15: 1385691, 2024.
Article in English | MEDLINE | ID: mdl-38605955

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are being increasingly used in cell-based therapies due to their broad anti-inflammatory and immunomodulatory properties. Intravascularly-administered MSCs do not efficiently migrate to sites of inflammation/immunopathology, but this shortfall has been overcome by cell surface enzymatic fucosylation to engender expression of the potent E-selectin ligand HCELL. In applications of cell-based therapies, cryopreservation enables stability in both storage and transport of the produced cells from the manufacturing facility to the point of care. However, it has been reported that cryopreservation and thawing dampens their immunomodulatory/anti-inflammatory activity even after a reactivation/reconditioning step. To address this issue, we employed a variety of methods to cryopreserve and thaw fucosylated human MSCs derived from either bone marrow or adipose tissue sources. We then evaluated their immunosuppressive properties, cell viability, morphology, proliferation kinetics, immunophenotype, senescence, and osteogenic and adipogenic differentiation. Our studies provide new insights into the immunobiology of cryopreserved and thawed MSCs and offer a readily applicable approach to optimize the use of fucosylated human allogeneic MSCs as immunomodulatory/anti-inflammatory therapeutics.


Subject(s)
Immunomodulation , Mesenchymal Stem Cells , Humans , Glycosylation , Mesenchymal Stem Cells/metabolism , Cryopreservation/methods , Anti-Inflammatory Agents/metabolism
2.
Clin Cancer Res ; 30(10): 2085-2096, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38466644

ABSTRACT

PURPOSE: B-cell maturation antigen (BCMA)-chimeric antigen receptor T-cells (CART) improve results obtained with conventional therapy in the treatment of relapsed/refractory multiple myeloma. However, the high demand and expensive costs associated with CART therapy might prove unsustainable for health systems. Academic CARTs could potentially overcome these issues. Moreover, response biomarkers and resistance mechanisms need to be identified and addressed to improve efficacy and patient selection. Here, we present clinical and ancillary results of the 60 patients treated with the academic BCMA-CART, ARI0002h, in the CARTBCMA-HCB-01 trial. PATIENTS AND METHODS: We collected apheresis, final product, peripheral blood and bone marrow samples before and after infusion. We assessed BCMA, T-cell subsets, CART kinetics and antibodies, B-cell aplasia, cytokines, and measurable residual disease by next-generation flow cytometry, and correlated these to clinical outcomes. RESULTS: At cut-off date March 17, 2023, with a median follow-up of 23.1 months (95% CI, 9.2-37.1), overall response rate in the first 3 months was 95% [95% confidence interval (CI), 89.5-100]; cytokine release syndrome (CRS) was observed in 90% of patients (5% grades ≥3) and grade 1 immune effector cell-associated neurotoxicity syndrome was reported in 2 patients (3%). Median progression-free survival was 15.8 months (95% CI, 11.5-22.4). Surface BCMA was not predictive of response or survival, but soluble BCMA correlated with worse clinical outcomes and CRS severity. Activation marker HLA-DR in the apheresis was associated with longer progression-free survival and increased exhaustion markers correlated with poorer outcomes. ARI0002h kinetics and loss of B-cell aplasia were not predictive of relapse. CONCLUSIONS: Despite deep and sustained responses achieved with ARI0002h, we identified several biomarkers that correlate with poor outcomes.


Subject(s)
B-Cell Maturation Antigen , Immunotherapy, Adoptive , Multiple Myeloma , Humans , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Multiple Myeloma/drug therapy , B-Cell Maturation Antigen/immunology , B-Cell Maturation Antigen/antagonists & inhibitors , Male , Female , Middle Aged , Aged , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Adult , Biomarkers, Tumor , Receptors, Chimeric Antigen/immunology , Treatment Outcome
4.
Stem Cell Res Ther ; 15(1): 32, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321563

ABSTRACT

BACKGROUND: The neuronal transdifferentiation of adult bone marrow cells (BMCs) is still considered an artifact based on an alternative explanation of experimental results supporting this phenomenon obtained over decades. However, recent studies have shown that following neural induction, BMCs enter an intermediate cellular state before adopting neural-like morphologies by active neurite extension and that binucleated BMCs can be formed independent of any cell fusion events. These findings provide evidence to reject the idea that BMC neural transdifferentiation is merely an experimental artifact. Therefore, understanding the intermediate states that cells pass through during transdifferentiation is crucial given their potential application in regenerative medicine and disease modelling. METHODS: In this study, we examined the functional significance of the variety of morphologies and positioning that cell nuclei of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can adopt during neural-like differentiation using live-cell nuclear fluorescence labelling, time-lapse microscopy, and confocal microscopy analysis. RESULTS: Here, we showed that after neural induction, hBM-MSCs enter an intermediate cellular state in which the nuclei are able to move within the cells, switching shapes and positioning and even generating cellular protrusions as they attempt to contact the cells around them. These findings suggest that changes in nuclear positioning occur because human cell nuclei somehow sense their environment. In addition, we showed the process of direct interactions between cell nuclei, which opens the possibility of a new level of intercellular interaction. CONCLUSIONS: The present study advances the understanding of the intermediate stage through which hBM-MSCs pass during neural transdifferentiation, which may be crucial to understanding the mechanisms of these cell conversion processes and eventually harness them for use in regenerative medicine. Importantly, our study provides for the first time evidence that the nuclei of hBM-MSC-derived intermediate cells somehow sense their environment, generating cellular protrusions to contact other cells. In summary, human mesenchymal stromal cells could not only help to increase our understanding of the mechanisms underlying cellular plasticity but also facilitate the exact significance of nuclear positioning in cellular function and in tissue physiology.


Subject(s)
Adult Stem Cells , Neurons , Adult , Humans , Cell Differentiation/physiology , Cell Surface Extensions , Cell Nucleus , Bone Marrow Cells , Cells, Cultured
5.
Haematologica ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38031761

ABSTRACT

Immunoparesis (IP) in multiple myeloma (MM) patients can be measured by classic assessment of immunoglobulin (Ig) levels or by analysis of the uninvolved heavy/light chain pair of the same immunoglobulin (uHLC) by the Hevylite® assay. In this study we evaluate the prognostic value of recovery from IP measured by classic total Ig and uHLC assessment in newly diagnosed MM transplant-eligible (NDMM-TE) patients with intensive treatment and its association with Minimal Residual Disease (MRD). Patients were enrolled and treated in the PETHEMA/GEM2012MENOS65 trial and continued in the PETHEMA/GEM2014MAIN trial. Total Ig (IgG, IgA and IgM) and uHLC were analyzed in a central laboratory at diagnosis, after consolidation treatment and after the first year of maintenance. MRD was analyzed by next generation flow cytometry after consolidation (sensitivity level 2x10-6). We found no differences in progression free survival (PFS) between patients who recovered and patients who didn't recover from IP after consolidation when examining classic total Ig and uHLC. However, after the first year of maintenance, in contrast to patients with classic IP, patients with recovery from uHLC IP had longer PFS than patients without recovery, with hazard ratio of 0.42 (CI95% 0.21-0.81; p=0.008). Multivariate analysis with Cox proportional-hazards regression models confirmed recovery from uHLC IP after the first year of maintenance as an independent prognostic factor for PFS, with an increase in C-statistic of 0.05 (-0.04-0.14; p<0.001) when adding uHLC IP recovery. Moreover, we observed that MRD status and uHLC IP recovery affords complementary information for risk stratification. In conclusion, recovery from uHLC IP after one year of maintenance is an independent prognostic factor for PFS in NDMM-TE patients who receive intensive treatment. Immune reconstitution, measured as recovery from uHLC IP, provides complementary prognostic information to MRD assessment.

6.
Nat Commun ; 14(1): 5825, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730678

ABSTRACT

Tumor recognition by T cells is essential for antitumor immunity. A comprehensive characterization of T cell diversity may be key to understanding the success of immunomodulatory drugs and failure of PD-1 blockade in tumors such as multiple myeloma (MM). Here, we use single-cell RNA and T cell receptor sequencing to characterize bone marrow T cells from healthy adults (n = 4) and patients with precursor (n = 8) and full-blown MM (n = 10). Large T cell clones from patients with MM expressed multiple immune checkpoints, suggesting a potentially dysfunctional phenotype. Dual targeting of PD-1 + LAG3 or PD-1 + TIGIT partially restored their function in mice with MM. We identify phenotypic hallmarks of large intratumoral T cell clones, and demonstrate that the CD27- and CD27+ T cell ratio, measured by flow cytometry, may serve as a surrogate of clonal T cell expansions and an independent prognostic factor in 543 patients with MM treated with lenalidomide-based treatment combinations.


Subject(s)
Multiple Myeloma , Adult , Humans , Animals , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , T-Lymphocytes , Programmed Cell Death 1 Receptor/genetics , Lenalidomide , Clone Cells
7.
Bone Marrow Transplant ; 58(11): 1182-1188, 2023 11.
Article in English | MEDLINE | ID: mdl-37543712

ABSTRACT

In the setting of a first relapse of multiple myeloma (MM), a second autologous stem cell transplant (ASCT) following carfilzomib-lenalidomide-dexamethasone (KRd) is an option, although there is scarce data concerning this approach. We performed a retrospective study involving 22 EBMT-affiliated centers. Eligible MM patients had received a second-line treatment with KRd induction followed by a second ASCT between 2016 and 2018. Primary objective was to estimate progression-free survival (PFS) and overall survival (OS). Secondary objectives were to assess the response rate and identify significant variables affecting PFS and OS. Fifty-one patients were identified, with a median age of 62 years. Median PFS after ASCT was 29.5 months while 24- and 36-months OS rates were 92.1% and 84.5%, respectively. Variables affecting PFS were an interval over four years between transplants and the achievement of a very good partial response (VGPR) or better before the relapse ASCT. Our study suggests that a relapse treatment with ASCT after KRd induction is an effective strategy for patients with a lenalidomide-sensitive first relapse. Patients with at least four years of remission after a frontline ASCT and who achieved at least a VGPR after KRd induction appear to benefit the most from this approach.


Subject(s)
Multiple Myeloma , Humans , Middle Aged , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Retrospective Studies , Treatment Outcome , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Dexamethasone/therapeutic use , Transplantation, Autologous
8.
Lancet Oncol ; 24(8): 913-924, 2023 08.
Article in English | MEDLINE | ID: mdl-37414060

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy is a promising option for patients with heavily treated multiple myeloma. Point-of-care manufacturing can increase the availability of these treatments worldwide. We aimed to assess the safety and activity of ARI0002h, a BCMA-targeted CAR T-cell therapy developed by academia, in patients with relapsed or refractory multiple myeloma. METHODS: CARTBCMA-HCB-01 is a single-arm, multicentre study done in five academic centres in Spain. Eligible patients had relapsed or refractory multiple myeloma and were aged 18-75 years; with an Eastern Cooperative Oncology Group performance status of 0-2; two or more previous lines of therapy including a proteasome inhibitor, an immunomodulatory agent, and an anti-CD38 antibody; refractoriness to the last line of therapy; and measurable disease according to the International Myeloma Working Group criteria. Patients received an initial fractionated infusion of 3 × 106 CAR T cells per kg bodyweight in three aliquots (0·3, 0·9, and 1·8 × 106 CAR-positive cells per kg intravenously on days 0, 3, and 7) and a non-fractionated booster dose of up to 3 × 106 CAR T cells per kg bodyweight, at least 100 days after the first infusion. The primary endpoints were overall response rate 100 days after first infusion and the proportion of patients developing cytokine-release syndrome or neurotoxic events in the first 30 days after receiving treatment. Here, we present an interim analysis of the ongoing trial; enrolment has ended. This study is registered with ClinicalTrials.gov, NCT04309981, and EudraCT, 2019-001472-11. FINDINGS: Between June 2, 2020, and Feb 24, 2021, 44 patients were assessed for eligibility, of whom 35 (80%) were enrolled. 30 (86%) of 35 patients received ARI0002h (median age 61 years [IQR 53-65], 12 [40%] were female, and 18 [60%] were male). At the planned interim analysis (cutoff date Oct 20, 2021), with a median follow-up of 12·1 months (IQR 9·1-13·5), overall response during the first 100 days from infusion was 100%, including 24 (80%) of 30 patients with a very good partial response or better (15 [50%] with complete response, nine [30%] with very good partial response, and six [20%] with partial response). Cytokine-release syndrome was observed in 24 (80%) of 30 patients (all grade 1-2). No cases of neurotoxic events were observed. Persistent grade 3-4 cytopenias were observed in 20 (67%) patients. Infections were reported in 20 (67%) patients. Three patients died: one because of progression, one because of a head injury, and one due to COVID-19. INTERPRETATION: ARI0002h administered in a fractioned manner with a booster dose after 3 months can provide deep and sustained responses in patients with relapsed or refractory multiple myeloma, with a low toxicity, especially in terms of neurological events, and with the possibility of a point-of-care approach. FUNDING: Instituto de Salud Carlos III (co-funded by the EU), Fundación La Caixa, and Fundació Bosch i Aymerich.


Subject(s)
COVID-19 , Multiple Myeloma , Humans , Male , Female , Middle Aged , Multiple Myeloma/drug therapy , Immunotherapy, Adoptive/adverse effects , B-Cell Maturation Antigen , Pilot Projects , Cytokines
9.
Ann Hematol ; 102(8): 2069-2075, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37171598

ABSTRACT

Acquired thrombotic thrombocytopenic purpura (TTP) is a life-threatening disorder. N-Acetylcysteine (NAC) rapidly degrades ultra-large von Willebrand factor multimers by disrupting the disulfide bonds. We report a series of twelve consecutive patients diagnosed with acquired TTP successfully treated with high-dose NAC (150 mg/kg/day) in combination with plasma exchange and steroids. Eight patients also received rituximab. Two patients presented refractory TTP. All patients achieved a quick clinical response in a median time of 5.5 days after starting NAC and are alive after a median follow-up of 29 months. The treatment was feasible and well tolerated. These data provide further evidence of the potential benefit and safety of adding NAC to the standard of care.


Subject(s)
Purpura, Thrombotic Thrombocytopenic , Humans , Purpura, Thrombotic Thrombocytopenic/diagnosis , Purpura, Thrombotic Thrombocytopenic/drug therapy , ADAMTS13 Protein , Rituximab/therapeutic use , Plasma Exchange , Acetylcysteine/therapeutic use
10.
Int J Mol Sci ; 24(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37047181

ABSTRACT

Unsuccessful wound closure in chronic wounds can be linked to altered keratinocyte activation and their inability to re-epithelize. Suggested mechanisms driving this impairment involve unbalanced cytokine signaling. However, the molecular events leading to these aberrant responses are poorly understood. Among cytokines affecting keratinocyte responses, Transforming Growth Factor-ß (TFG-ß) is thought to have a great impact. In this study, we have used a previously characterized skin epidermal in vitro model, HaCaT cells continuously exposed to TGF-ß1, to study the wound recovery capabilities of chronified/senescent keratinocytes. In this setting, chronified keratinocytes show decreased migration and reduced activation in response to injury. Amniotic membrane (AM) has been used successfully to manage unresponsive complicated wounds. In our in vitro setting, AM treatment of chronified keratinocytes re-enabled migration in the early stages of wound healing, also promoting proliferation at later stages. Interestingly, when checking the gene expression of markers known to be altered in TGF-ß chronified cells and involved in cell cycle regulation, early migratory responses, senescence, and chronic inflammation, we discovered that AM treatment seemed to reset back to keratinocyte status. The analysis of the evolution of both the levels of keratinocyte activation marker cytokeratin 17 and the spatial-temporal expression pattern of the proliferation marker Ki-67 in human in vivo biopsy samples suggests that responses to AM recorded in TGF-ß chronified HaCaT cells would be homologous to those of resident keratinocytes in chronic wounds. All these results provide further evidence that sustained TGF-ß might play a key role in wound chronification and postulate the validity of our TGF-ß chronified HaCaT in vitro model for the study of chronic wound physiology.


Subject(s)
Amnion , Keratinocytes , Humans , Amnion/metabolism , Keratinocytes/metabolism , Skin/metabolism , Wound Healing/physiology , Transforming Growth Factor beta/metabolism , Cell Movement
12.
Sci Rep ; 12(1): 20615, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450873

ABSTRACT

Although it has been reported that bone marrow-derived cells (BMDCs) can transdifferentiate into neural cells, the findings are considered unlikely. It has been argued that the rapid neural transdifferentiation of BMDCs reported in culture studies is actually due to cytotoxic changes induced by the media. While transplantation studies indicated that BMDCs can form new neurons, it remains unclear whether the underlying mechanism is transdifferentiation or BMDCs-derived cell fusion with the existing neuronal cells. Cell fusion has been put forward to explain the presence of gene-marked binucleated neurons after gene-marked BMDCs transplantation. In the present study, we demostrated that human BMDCs can rapidly adopt a neural-like morphology through active neurite extension and binucleated human BMDCs can form with independence of any cell fusion events. We also showed that BMDCs neural-like differentiation involves the formation of intermediate cells which can then redifferentiate into neural-like cells, redifferentiate back to the mesenchymal fate or even repeatedly switch lineages without cell division. Furthermore, we have discovered that nuclei from intermediate cells rapidly move within the cell, adopting different morphologies and even forming binucleated cells. Therefore, our results provide a stronger basis for rejecting the idea that BMDCs neural transdifferentiation is merely an artefact.


Subject(s)
Bone Marrow , Cell Communication , Humans , Cell Fusion , Cell Differentiation , Neurons
13.
NPJ Regen Med ; 7(1): 61, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36261464

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are distributed within all tissues of the body. Though best known for generating connective tissue and bone, these cells also display immunoregulatory properties. A greater understanding of MSC cell biology is urgently needed because culture-expanded MSCs are increasingly being used in treatment of inflammatory conditions, especially life-threatening immune diseases. While studies in vitro provide abundant evidence of their immunomodulatory capacity, it is unknown whether tissue colonization of MSCs is critical to their ability to dampen/counteract evolving immunopathology in vivo. To address this question, we employed a murine model of fulminant immune-mediated inflammation, acute graft-versus-host disease (aGvHD), provoked by donor splenocyte-enriched full MHC-mismatched hematopoietic stem cell transplant. aGvHD induced the expression of E-selectin within lesional endothelial beds, and tissue-specific recruitment of systemically administered host-derived MSCs was achieved by enforced expression of HCELL, a CD44 glycoform that is a potent E-selectin ligand. Compared to mice receiving HCELL- MSCs, recipients of HCELL+ MSCs had increased MSC intercalation within aGvHD-affected site(s), decreased leukocyte infiltrates, lower systemic inflammatory cytokine levels, superior tissue preservation, and markedly improved survival. Mechanistic studies reveal that ligation of HCELL/CD44 on the MSC surface markedly potentiates MSC immunomodulatory activity by inducing MSC secretion of a variety of potent immunoregulatory molecules, including IL-10. These findings indicate that MSCs counteract immunopathology in situ, and highlight a role for CD44 engagement in unleashing MSC immunobiologic properties that maintain/establish tissue immunohomeostasis.

14.
Histopathology ; 81(6): 826-840, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36109172

ABSTRACT

The frequency of aggressive subtypes of B-cell non-Hodgkin lymphoma (B-NHL), such as high-grade B-cell lymphomas (HGBL) with MYC and BCL2 and/or BCL6 rearrangement (HGBL-DH/TH) or Burkitt-like lymphoma (BL) with 11q aberration, is not well known in the HIV setting. We aimed to characterise HIV-associated aggressive B-NHL according to the 2017 WHO criteria, and to identify genotypic and phenotypic features with prognostic impact. Seventy-five HIV-associated aggressive B-NHL were studied by immunohistochemistry (CD10, BCL2, BCL6, MUM1, MYC, and CD30), EBV-encoded RNAs (EBERs), and fluorescence in situ hybridisation (FISH) to evaluate the status of the MYC, BCL2, and BCL6 genes and chromosome 11q. The 2017 WHO classification criteria and the Hans algorithm, for the cell-of-origin classification of diffuse large B-cell lymphomas (DLBCL), were applied. In DLBCL cases, the frequencies of MYC and BCL6 rearrangements (14.9 and 27.7%, respectively) were similar to those described in HIV-negative patients, but BCL2 rearrangements were infrequent (4.3%). MYC expression was identified in 23.4% of DLBCL cases, and coexpression of MYC and BCL2 in 13.0%, which was associated with a worse prognosis. As for BL cases, the expression of MUM1 (30.4%) conferred a worse prognosis. Finally, the prevalence of HGBL-DH/TH and BL-like with 11q aberration are reported in the HIV setting. The phenotypic and genotypic characteristics of HIV-associated aggressive B-NHL are similar to those of the general population, except for the low frequency of BCL2 rearrangements in DLBCL. MYC and BCL2 coexpression in DLBCL, and MUM-1 expression in BL, have a negative prognostic impact on HIV-infected individuals.


Subject(s)
Burkitt Lymphoma , HIV Infections , Lymphoma, Large B-Cell, Diffuse , Humans , Prognosis , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Burkitt Lymphoma/genetics , Gene Rearrangement , Chromosome Aberrations , Proto-Oncogene Proteins c-bcl-2/genetics , HIV Infections/diagnosis , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-bcl-6/genetics
15.
Front Immunol ; 13: 918565, 2022.
Article in English | MEDLINE | ID: mdl-35812460

ABSTRACT

MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Cell- and Tissue-Based Therapy , Treatment Outcome , Umbilical Cord
16.
Front Med (Lausanne) ; 9: 880752, 2022.
Article in English | MEDLINE | ID: mdl-35492364

ABSTRACT

ß-thalassemia is a disease caused by genetic mutations including a nucleotide change, small insertions or deletions in the ß-globin gene, or in rare cases, gross deletions into the ß-globin gene. These mutations affect globin-chain subunits within the hemoglobin tetramer what induces an imbalance in the α/ß-globin chain ratio, with an excess of free α-globin chains that triggers the most important pathogenic events of the disease: ineffective erythropoiesis, chronic anemia/chronic hypoxia, compensatory hemopoietic expansion and iron overload. Based on advances in our knowledge of the pathophysiology of ß-thalassemia, in recent years, emerging therapies and clinical trials are being conducted and are classified into three major categories based on the different approach features of the underlying pathophysiology: correction of the α/ß-globin disregulation; improving iron overload and reverse ineffective erythropoiesis. However, pathways such as the dysregulation of transcriptional factors, activation of the inflammasome, or approach to mechanisms of bone mineral loss, remain unexplored for future therapeutic targets. In this review, we update the main pathophysiological pathways involved in ß-thalassemia, focusing on the development of new therapies directed at new therapeutic targets.

17.
Front Cell Dev Biol ; 10: 797945, 2022.
Article in English | MEDLINE | ID: mdl-35419364

ABSTRACT

Background: The lack of knowledge of the progression mechanisms of glioblastoma (GB), the most aggressive brain tumor, contributes to the absence of successful therapeutic strategies. Our team has recently demonstrated a crucial new role for chaperone-mediated autophagy (CMA) in pericytes (PC)-acquired immunosuppressive function, which prevents anti-tumor immune responses and facilitates GB progression. The possible impact that GB-induced CMA in PC has on other functions that might be useful for future GB prognosis/treatment, has not been explored yet. Thus, we proposed to analyze the contribution of CMA to other GB-induced changes in PC biology and determine if CMA ablation in PC is a key target mechanism for GB treatment. Methods: Studies of RNA-seq and secretome analysis were done in GB-conditioned PC with and without CMA (from knockout mice for LAMP-2A) and compared to control PC. Different therapeutic strategies in a GB mouse model were compared. Results: We found several gene expression pathways enriched in LAMP2A-KO PC and affected by GB-induced CMA in PC that correlate with our previous findings. Phagosome formation, cellular senescence, focal adhesion and the effector function to promote anti-tumor immune responses were the most affected pathways, revealing a transcriptomic profiling of specific target functions useful for future therapies. In addition, several molecules associated with tumor mechanisms and related to tumor immune responses such as gelsolin, periostin, osteopontin, lumican and vitamin D, were identified in the PC secretome dependent on GB-induced CMA. The CMA ablation in PC with GB cells showed an expected immunogenic phenotype able to phagocyte GB cells and a key strategy to develop future therapeutic strategies against GB tumor progression. A novel intravenous therapy using exofucosylated CMA-deficient PC was efficient to make PC reach the tumor niche and facilitate tumor elimination. Conclusion: Our results corroborate previous findings on the impaired immunogenic function of PC with GB-induced CMA, driving to other altered PC functions and the identifications of new target markers related to the tumor immune responses and useful for GB prognosis/therapy. Our work demonstrates CMA ablation in PC as a key target mechanism to develop a successful therapy against GB progression.

18.
Haematologica ; 107(11): 2675-2684, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35320921

ABSTRACT

Peripheral T-cell lymphomas (PTCL) are a heterogeneous group of rare lymphoid malignancies that mostly have poor prognoses with currently available treatments. Upfront consolidation with autologous stem cell transplantation (ASCT) is frequently carried out, but its efficacy has never been investigated in randomized trials. We designed a multicenter, international, retrospective study with the main objective of comparing progression-free survival and overall survival of patients with PTCL who underwent ASCT in complete remission (CR) after first-line chemotherapy with a control group who did not undergo ASCT. From the initial population of 286 registered patients, 174 patients with PTCL other than anaplastic large cell lymphoma, ALK-positive, deemed fit for ASCT at the time of diagnosis, and who were in CR or uncertain CR after induction therapy (CR1) were included in our analysis. one hundred and three patients underwent ASCT, whereas 71 did not, in most cases (n=53) because the physician decided against it. With a median follow-up of 65.5 months, progression-free survival was significantly better in the transplanted patients than in the non-transplanted group: 63% versus 48% at 5 years (P=0.042). Overall survival was significantly longer for ASCT patients in the subgroup with advanced stage at diagnosis (5-year overall survival: 70% vs. 50%, P=0.028). In the multivariate analysis, first-line ASCT was associated with significantly prolonged progression-free survival (HR=0.57, 95% CI: 0.35-0.93) and overall survival (HR=0.57, 95% CI: 0.33-0.99). In conclusion, our study supports the use of ASCT as a consolidation strategy for patients with PTCL in CR1. These results should be confirmed in a prospective randomized study.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphoma, T-Cell, Peripheral , Humans , Transplantation, Autologous , Hematopoietic Stem Cell Transplantation/methods , Retrospective Studies , Prospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Disease-Free Survival
19.
Blood Adv ; 6(11): 3234-3239, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35157768

ABSTRACT

Monitoring of the monoclonal protein (M-protein) by electrophoresis and/or immunofixation (IFE) has long been used to assess treatment response in multiple myeloma (MM). However, with the use of highly effective therapies, the M-protein becomes frequently undetectable, and more sensitive methods had to be explored. We applied IFE and mass spectrometry (EXENT&FLC-MS) in serum samples from newly diagnosed MM patients enrolled in the PETHEMA/GEM2012MENOS65 obtained at baseline (n = 223), and after induction (n = 183), autologous stem cell transplantation (n = 173), and consolidation (n = 173). At baseline, the isotypes identified with both methods fully matched in 82.1% of samples; in the rest but 2 cases, EXENT&FLC-MS provided additional information to IFE with regards to the M-protein(s). Overall, the results of EXENT&FLC-MS and IFE were concordant in >80% of cases, being most discordances due to EXENT&FLC-MS+ but IFE- cases. After consolidation, IFE was not able to discriminate 2 cohorts with different median progression-free survival (PFS), but EXENT&FLC-MS did so; furthermore, among IFE- patients, EXENT&FLC-MS identified 2 groups with significantly different median PFS (P = .0008). In conclusion, compared with IFE, EXENT&FLC-MS is more sensitive to detect the M-protein of patients with MM, both at baseline and during treatment, and provides a more accurate prediction of patients' outcome. This trial was registered at www.clinicaltrials.gov as #NCT01916252.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Antibodies, Monoclonal , Humans , Immunoglobulin Light Chains , Mass Spectrometry , Multiple Myeloma/diagnosis , Multiple Myeloma/therapy , Transplantation, Autologous
20.
Shock ; 57(1): 95-105, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34172614

ABSTRACT

BACKGROUND: Endotheliopathy is a key element in COVID-19 pathophysiology, contributing to both morbidity and mortality. Biomarkers distinguishing different COVID-19 phenotypes from sepsis syndrome remain poorly understood. OBJECTIVE: To characterize circulating biomarkers of endothelial damage in different COVID-19 clinical disease stages compared with sepsis syndrome and normal volunteers. METHODS: Patients with COVID-19 pneumonia (n = 49) were classified into moderate, severe, or critical (life-threatening) disease. Plasma samples were collected within 48 to 72 h of hospitalization to analyze endothelial activation markers, including soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), von Willebrand Factor (VWF), A disintegrin-like and metalloprotease with thrombospondin type 1 motif no. 13 (ADAMTS-13) activity, thrombomodulin (TM), and soluble TNF receptor I (sTNFRI); heparan sulfate (HS) for endothelial glycocalyx degradation; C5b9 deposits on endothelial cells in culture and soluble C5b9 for complement activation; circulating dsDNA for neutrophil extracellular traps (NETs) presence, and α2-antiplasmin and PAI-1 as parameters of fibrinolysis. We compared the level of each biomarker in all three COVID-19 groups and healthy donors as controls (n = 45). Results in critically ill COVID-19 patients were compared with other intensive care unit (ICU) patients with septic shock (SS, n = 14), sepsis (S, n = 7), and noninfectious systemic inflammatory response syndrome (NI-SIRS, n = 7). RESULTS: All analyzed biomarkers were increased in COVID-19 patients versus controls (P < 0.001), except for ADAMTS-13 activity that was normal in both groups. The increased expression of sVCAM-1, VWF, sTNFRI, and HS was related to COVID-19 disease severity (P < 0.05). Several differences in these parameters were found between ICU groups: SS patients showed significantly higher levels of VWF, TM, sTNFRI, and NETS compared with critical COVID-19 patients and ADAMTS-13 activity was significantly lover in SS, S, and NI-SIRS versus critical COVID-19 (P < 0.001). Furthermore, α2-antiplasmin activity was higher in critical COVID-19 versus NI-SIRS (P < 0.01) and SS (P < 0.001), whereas PAI-1 levels were significantly lower in COVID-19 patients compared with NI-SIRS, S, and SS patients (P < 0.01). CONCLUSIONS: COVID-19 patients present with increased circulating endothelial stress products, complement activation, and fibrinolytic dysregulation, associated with disease severity. COVID-19 endotheliopathy differs from SS, in which endothelial damage is also a critical feature of pathobiology. These biomarkers could help to stratify the severity of COVID-19 disease and may also provide information to guide specific therapeutic strategies to mitigate endotheliopathy progression.


Subject(s)
COVID-19/blood , ADAMTS13 Protein/blood , Aged , Biomarkers/blood , Complement Membrane Attack Complex/analysis , DNA/blood , Female , Heparitin Sulfate/blood , Humans , Male , Middle Aged , Patient Acuity , Plasminogen Activator Inhibitor 1/blood , Prospective Studies , Receptors, Tumor Necrosis Factor, Type I/blood , Sepsis/blood , Thrombomodulin/blood , Vascular Cell Adhesion Molecule-1/blood , alpha-2-Antiplasmin/analysis , von Willebrand Factor/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...