Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(6): e0273123, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37966209

ABSTRACT

IMPORTANCE: Burkholderia cenocepacia causes severe infections in cystic fibrosis (CF) patients. CF patients are prone to reoccurring infections due to the accumulation of mucus in their lungs, where bacteria can adhere and grow. Some of the antibiotics that inhibit B. cenocepacia in the laboratory are not effective for CF patients. A major contributor to poor clinical outcomes is that antibiotic testing in laboratories occurs under conditions that are different from those of sputum. CF sputum may be acidic and have increased concentrations of iron and zinc. Here, we used a medium that mimics CF sputum and found that acidic pH decreased the activity of many of the antibiotics used against B. cenocepacia. In addition, we assessed susceptibility to more than 500 antibiotics and found four active compounds against B. cenocepacia. Our findings give a better understanding of the lack of a relationship between susceptibility testing and the clinical outcome when treating B. cenocepacia infections.


Subject(s)
Burkholderia Infections , Burkholderia cenocepacia , Cystic Fibrosis , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Burkholderia Infections/drug therapy , Burkholderia Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Hydrogen-Ion Concentration
2.
J Biol Chem ; 294(30): 11622-11636, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31197035

ABSTRACT

Staphylococcus aureus infection relies on iron acquisition from its host. S. aureus takes up iron through heme uptake by the iron-responsive surface determinant (Isd) system and by the production of iron-scavenging siderophores. Staphyloferrin B (SB) is a siderophore produced by the 9-gene sbn gene cluster for SB biosynthesis and efflux. Recently, the ninth gene product, SbnI, was determined to be a free l-serine kinase that produces O-phospho-l-serine (OPS), a substrate for SB biosynthesis. Previous studies have also characterized SbnI as a DNA-binding regulatory protein that senses heme to control sbn gene expression for SB synthesis. Here, we present crystal structures at 1.9-2.1 Å resolution of a SbnI homolog from Staphylococcus pseudintermedius (SpSbnI) in both apo form and in complex with ADP, a product of the kinase reaction; the latter confirmed the active-site location. The structures revealed that SpSbnI forms a dimer through C-terminal domain swapping and a dimer of dimers through intermolecular disulfide formation. Heme binding had only a modest effect on SbnI enzymatic activity, suggesting that its two functions are independent and structurally distinct. We identified a heme-binding site and observed catalytic heme transfer between a heme-degrading protein of the Isd system, IsdI, and SbnI. These findings support the notion that SbnI has a bifunctional role contributing precursor OPS to SB synthesis and directly sensing heme to control expression of the sbn locus. We propose that heme transfer from IsdI to SbnI enables S. aureus to control iron source preference according to the sources available in the environment.


Subject(s)
Bacterial Proteins/physiology , Citrates/biosynthesis , Heme/metabolism , Staphylococcus aureus/metabolism , Adenosine Diphosphate/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Catalysis , Citrates/metabolism , Genes, Bacterial , Protein Binding , Protein Conformation , Staphylococcus aureus/genetics
3.
Biometals ; 32(3): 409-424, 2019 06.
Article in English | MEDLINE | ID: mdl-30911924

ABSTRACT

Staphylococcus aureus is a versatile opportunistic human pathogen. Infection by this bacterium requires uptake of iron from the human host, but iron is highly restricted in this environment. Staphylococcus aureus iron sufficiency is achieved primarily through uptake of heme and high-affinity iron chelators, known as siderophores. Two siderophores (staphyloferrins) are produced and secreted by S. aureus into the extracellular environment to capture iron. Staphylococcus aureus expresses specific uptake systems for staphyloferrins and more general uptake systems for siderophores produced by other microorganisms. The S. aureus heme uptake system uses highly-specific cell surface receptors to extract heme from hemoglobin and hemoglobin-haptoglobin complexes for transport into the cytoplasm where it is degraded to liberate iron. Initially thought to be independent systems, recent findings indicate that these iron uptake pathways intersect. IruO is a reductase that releases iron from heme and some ferric-siderophores. Moreover, multifunctional SbnI produces a precursor for staphyloferrin B biosynthesis, and also binds heme to regulate expression of the staphyloferrin B biosynthesis pathway. Intersection of the S. aureus iron uptake pathways is hypothesized to be important for rapid adaptation to available iron sources. Components of the heme and siderophore uptake systems are currently being targeted in the development of therapeutics against S. aureus.


Subject(s)
Heme/metabolism , Iron/metabolism , Siderophores/metabolism , Staphylococcus aureus/metabolism , Siderophores/biosynthesis , Siderophores/pharmacology , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL