Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Neurol ; 271(3): 1355-1365, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37950760

ABSTRACT

Mutations in the FIG4 gene have been identified in various diseases, including amyotrophic lateral sclerosis, Parkinson's disease, and Charcot-Marie-Tooth 4 J (CMT4J), with a wide range of phenotypic manifestations. We present eight cases of CMT4J patients carrying the p.Ile41Thr mutation of FIG4. The patients were categorized according to their phenotype. Six patients had a pure CMT; whereas, two patients had a CMT associated with parkinsonism. Three patients had an early onset and exhibited more severe forms of the disease. Three others experienced symptoms in their teenage years and had milder forms. Two patients had a late onset in adulthood. Four patients showed electrophysiological evidence of conduction blocks, typically associated with acquired neuropathies. Consequently, two of them received intravenous immunoglobulin treatment without a significant objective response. Interestingly, two heterozygous patients with the same mutations exhibited contrasting phenotypes, one having a severe early-onset form and the other experiencing a slow disease progression starting at the age of 49. Notably, although 7 out of 8 patients in this study were compound heterozygous for the p.Ile41Thr mutation, only one individual was found to be homozygous for this genetic variant and exhibited an early-onset, severe form of the disease. Additionally, one patient who developed the disease in his youth was also diagnosed with hereditary neuropathy with pressure palsies. Our findings provide insights into the CMT4J subtype by reporting on eight heterogeneous patient cases and highlight the potential for misdiagnosis when conduction blocks or asymmetrical nerve conduction study results are observed in patients with FIG4 mutations.


Subject(s)
Amyotrophic Lateral Sclerosis , Charcot-Marie-Tooth Disease , Adolescent , Humans , Mutation/genetics , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Phenotype , Heterozygote , Flavoproteins/genetics , Phosphoric Monoester Hydrolases/genetics
2.
J Med Genet ; 61(4): 369-377, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37935568

ABSTRACT

BACKGROUND: Titinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype-phenotype associations. METHODS: Our study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients' muscles and performed genotype-phenotype inheritance association study by combining the clinical and biological data of these eight families. RESULTS: Seven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype-phenotype associations of titinopathies. CONCLUSION: Identifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype-phenotype associations of titinopathies, mainly distal myopathy in most of the patients.


Subject(s)
Distal Myopathies , Humans , Connectin/genetics , Distal Myopathies/genetics , DNA Copy Number Variations/genetics , Muscle, Skeletal/pathology , Mutation/genetics , Phenotype
3.
Eur J Neurol ; 30(1): 266-282, 2023 01.
Article in English | MEDLINE | ID: mdl-36094738

ABSTRACT

BACKGROUND AND PURPOSE: Although myasthenia gravis (MG) is recognized as an immunoglobulin G autoantibody-mediated disease, the relationship between autoantibody levels and disease activity in MG is unclear. We sought to evaluate this landscape through systematically assessing the evidence, testing the impact of predefined variables on any relationship, and augmenting with expert opinion. METHODS: In October 2020, a forum of leading clinicians and researchers in neurology from across Europe (Expert Forum for Rare Autoantibodies in Neurology in Myasthenia Gravis) participated in a series of virtual meetings that took place alongside the conduct of a systematic literature review (SLR). RESULTS: Forty-two studies were identified meeting inclusion criteria. Of these, 10 reported some correlation between a patient's autoantibody level and disease severity. Generally, decreased autoantibody levels (acetylcholine receptor, muscle-specific kinase, and titin) were positively and significantly correlated with improvements in disease severity (Quantitative Myasthenia Gravis score, Myasthenia Gravis Composite score, Myasthenia Gravis Activities of Daily Living score, Myasthenia Gravis Foundation of America classification). Given the limited evidence, testing the impact of predefined variables was not feasible. CONCLUSIONS: This first SLR to assess whether a correlation exists between autoantibody levels and disease activity in patients with MG has indicated a potential positive correlation, which could have clinical implications in guiding treatment decisions. However, in light of the limited and variable evidence, we cannot currently recommend routine clinical use of autoantibody level testing in this context. For now, patient's characteristics, clinical disease course, and laboratory data (e.g., autoantibody status, thymus histology) should inform management, alongside patient-reported outcomes. We highlight the need for future studies to reach more definitive conclusions on this relationship.


Subject(s)
Activities of Daily Living , Myasthenia Gravis , Humans , Myasthenia Gravis/therapy , Myasthenia Gravis/drug therapy , Autoantibodies , Immunoglobulin G , Biomarkers
4.
Int J Mol Sci ; 23(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35955641

ABSTRACT

The implementation of high-throughput diagnostic sequencing has led to the generation of large amounts of mutational data, making their interpretation more complex and responsible for long delays. It has been important to prioritize certain analyses, particularly those of "actionable" genes in diagnostic situations, involving specific treatment and/or management. In our project, we carried out an objective assessment of the clinical actionability of genes involved in myopathies, for which only few data obtained methodologically exist to date. Using the ClinGen Actionability criteria, we scored the clinical actionability of all 199 genes implicated in myopathies published by FILNEMUS for the "National French consensus on gene Lists for the diagnosis of myopathies using next generation sequencing". We objectified that 63 myopathy genes were actionable with the currently available data. Among the 36 myopathy genes with the highest actionability scores, only 8 had been scored to date by ClinGen. The data obtained through these methodological tools are an important resource for strategic choices in diagnostic approaches and the management of genetic myopathies. The clinical actionability of genes has to be considered as an evolving concept, in relation to progresses in disease knowledge and therapeutic approaches.


Subject(s)
High-Throughput Nucleotide Sequencing , Muscular Diseases , Consensus , Humans , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Muscular Diseases/therapy , Mutation , Patient Care
5.
Eur J Paediatr Neurol ; 31: 78-87, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33667896

ABSTRACT

With the exception of infantile spinal muscular atrophy (SMA) and congenital myotonic dystrophy 1 (DM1), congenital myopathies and muscular dystrophies with neonatal respiratory distress pose diagnostic challenges. Next-generation sequencing (NGS) provides hope for the diagnosis of these rare diseases. We evaluated the efficiency of next-generation sequencing (NGS) in ventilated newborns with peripheral hypotonia. We compared the results of our previous study in a cohort of 19 patients analysed by Sanger sequencing from 2007 to 2012, with a diagnostic yield of 26% (5/19), and those of a new retrospective study in 28 patients from 2007 to 2018 diagnosed using MyoPanel, a neuromuscular disease panel, with a diagnostic yield of 43% (12/28 patients). Pathogenic variants were found in five genes: ACTA1 (n = 4 patients), RYR1 (n = 2), CACNA1S (n = 1), NEB (n = 3), and MTM1 (n = 2). Myopanel increased the diagnosis of congenital neuromuscular diseases, but more than half the patients remained undiagnosed. Whole exome sequencing did not seem to fully respond to this diagnostic limitation. Therefore, explorations with whole genome sequencing will be the next step.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Neuromuscular Diseases/diagnosis , Respiratory Distress Syndrome, Newborn/diagnosis , Respiratory Distress Syndrome, Newborn/etiology , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Neuromuscular Diseases/genetics , Retrospective Studies
6.
Eur Heart J ; 42(20): 1976-1984, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33748842

ABSTRACT

AIMS: To estimate the effect of prophylactic angiotensin-converting enzyme inhibitors (ACEi) on survival in Duchenne muscular dystrophy (DMD). METHODS AND RESULTS: We analysed the data from the French multicentre DMD Heart Registry (ClinicalTrials.gov: NCT03443115). We estimated the association between the prophylactic prescription of ACEi and event-free survival in 668 patients aged 8 to 13 years, with normal left ventricular function, using (i) a Cox model with intervention as a time-dependent covariate, (ii) a propensity-based analysis comparing ACEi treatment vs. no treatment, and (iii) a set of sensitivity analyses. The study outcomes were overall survival and hospitalizations for heart failure (HF) or acute respiratory failure. Among the 668 patients included in the DMD Heart Registry, 576 (mean age 6.1 ± 2.8 years) were eligible for this study, of whom 390 were treated with ACEi prophylactically. Death occurred in 53 patients (13.5%) who were and 60 patients (32.3%) who were not treated prophylactically with ACEi, respectively. In a Cox model with intervention as a time-dependent variable, the hazard ratio (HR) associated with ACEi treatment was 0.49 [95% confidence interval (CI) 0.34-0.72] and 0.47 (95% CI 0.31-0.17) for overall mortality after adjustment for baseline variables. In the propensity-based analysis, 278 patients were included in the treatment group and 834 in the control group, with 18.5% and 30.4% 12-year estimated probability of death, respectively. ACEi were associated with a lower risk of death (HR 0.39; 95% CI 0.17-0.92) and hospitalization for HF (HR 0.16; 95% CI 0.04-0.62). All other sensitivity analyses yielded similar results. CONCLUSION: Prophylactic ACEi treatment in DMD was associated with a significantly higher overall survival and lower rates of hospitalization for HF.


Subject(s)
Heart Failure , Muscular Dystrophy, Duchenne , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Child , Child, Preschool , Heart Failure/drug therapy , Heart Failure/prevention & control , Humans , Muscular Dystrophy, Duchenne/drug therapy , Registries , Treatment Outcome , Ventricular Function, Left
7.
Hum Mutat ; 37(12): 1340-1353, 2016 12.
Article in English | MEDLINE | ID: mdl-27528516

ABSTRACT

Next-generation sequencing (NGS) has an established diagnostic value for inherited ataxia. However, the need of a rigorous process of analysis and validation remains challenging. Moreover, copy number variations (CNV) or dynamic expansions of repeated sequence are classically considered not adequately detected by exome sequencing technique. We applied a strategy of mini-exome coupled to read-depth based CNV analysis to a series of 33 patients with probable inherited ataxia and onset <50 years. The mini-exome consisted of the capture of 4,813 genes having associated clinical phenotypes. Pathogenic variants were found in 42% and variants of uncertain significance in 24% of the patients. These results are comparable to those from whole exome sequencing and better than previous targeted NGS studies. CNV and dynamic expansions of repeated CAG sequence were identified in three patients. We identified both atypical presentation of known ataxia genes (ATM, NPC1) and mutations in genes very rarely associated with ataxia (ERCC4, HSD17B4). We show that mini-exome bioinformatics data analysis allows the identification of CNV and dynamic expansions of repeated sequence. Our study confirms the diagnostic value of the proposed genetic analysis strategy. We also provide an algorithm for the multidisciplinary process of analysis, interpretation, and validation of NGS data.


Subject(s)
Cerebellar Ataxia/genetics , DNA Copy Number Variations , Exome , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Adolescent , Adult , Age of Onset , Ataxia Telangiectasia Mutated Proteins/genetics , Carrier Proteins/genetics , Cerebellar Ataxia/etiology , Child , Child, Preschool , DNA-Binding Proteins/genetics , Female , Genetic Predisposition to Disease , Humans , Intracellular Signaling Peptides and Proteins , Male , Membrane Glycoproteins/genetics , Niemann-Pick C1 Protein , Peroxisomal Multifunctional Protein-2/genetics , Young Adult
8.
Neurology ; 86(2): 161-9, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26659129

ABSTRACT

OBJECTIVE: To determine the molecular basis of a complex phenotype of congenital muscle weakness observed in an isolated but consanguineous patient. METHODS: The proband was evaluated clinically and neurophysiologically over a period of 15 years. Genetic testing of candidate genes was performed. Functional characterization of the candidate mutation was done in mammalian cell background using whole cell patch clamp technique. RESULTS: The proband had fatigable muscle weakness characteristic of congenital myasthenic syndrome with acute and reversible attacks of most severe muscle weakness as observed in periodic paralysis. We identified a novel homozygous SCN4A mutation (p.R1454W) linked to this recessively inherited phenotype. The p.R1454W substitution induced an important enhancement of fast and slow inactivation, a slower recovery for these inactivated states, and a frequency-dependent regulation of Nav1.4 channels in the heterologous expression system. CONCLUSION: We identified a novel loss-of-function mutation of Nav1.4 that leads to a recessive phenotype combining clinical symptoms and signs of congenital myasthenic syndrome and periodic paralysis, probably by decreasing channel availability for muscle action potential genesis at the neuromuscular junction and propagation along the sarcolemma.


Subject(s)
Genetic Predisposition to Disease , Mutation/genetics , Myasthenic Syndromes, Congenital/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Paralyses, Familial Periodic/genetics , Adult , Female , Humans , Muscle Weakness/genetics , Myasthenic Syndromes, Congenital/diagnosis , Neuromuscular Junction/genetics , Paralyses, Familial Periodic/diagnosis , Patch-Clamp Techniques/methods
9.
Brain ; 131(Pt 5): 1217-27, 2008 May.
Article in English | MEDLINE | ID: mdl-18325928

ABSTRACT

Distal hereditary motor neuropathy (HMN) is a clinically and genetically heterogeneous group of disorders affecting spinal alpha-motor neurons. Since 2001, mutations in six different genes have been identified for autosomal dominant distal HMN; glycyl-tRNA synthetase (GARS), dynactin 1 (DCTN1), small heat shock 27 kDa protein 1 (HSPB1), small heat shock 22 kDa protein 8 (HSPB8), Berardinelli-Seip congenital lipodystrophy (BSCL2) and senataxin (SETX). In addition a mutation in the (VAMP)-associated protein B and C (VAPB) was found in several Brazilian families with complex and atypical forms of autosomal dominantly inherited motor neuron disease. We have investigated the distribution of mutations in these seven genes in a cohort of 112 familial and isolated patients with a diagnosis of distal motor neuropathy and found nine different disease-causing mutations in HSPB8, HSPB1, BSCL2 and SETX in 17 patients of whom 10 have been previously reported. No mutations were found in GARS, DCTN1 and VAPB. The phenotypic features of patients with mutations in HSPB8, HSPB1, BSCL2 and SETX fit within the distal HMN classification, with only one exception; a C-terminal HSPB1-mutation was associated with upper motor neuron signs. Furthermore, we provide evidence for a genetic mosaicism in transmitting an HSPB1 mutation. This study, performed in a large cohort of familial and isolated distal HMN patients, clearly confirms the genetic and phenotypic heterogeneity of distal HMN and provides a basis for the development of algorithms for diagnostic mutation screening in this group of disorders.


Subject(s)
Hereditary Sensory and Motor Neuropathy/genetics , Mutation, Missense , Base Sequence , Chromosomes, Human, Pair 11/genetics , DNA Helicases , Electrophysiology , Female , GTP-Binding Protein gamma Subunits/genetics , Genotype , HSP27 Heat-Shock Proteins , Haplotypes , Heat-Shock Proteins/genetics , Hereditary Sensory and Motor Neuropathy/physiopathology , Humans , Male , Molecular Chaperones , Mosaicism , Multifunctional Enzymes , Neoplasm Proteins/genetics , Pedigree , Phenotype , Protein Serine-Threonine Kinases/genetics , RNA Helicases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...