Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Expert Rev Respir Med ; 18(1-2): 41-47, 2024.
Article in English | MEDLINE | ID: mdl-38489161

ABSTRACT

INTRODUCTION: Hypercapnia is developed in patients with acute and/or chronic respiratory conditions. Clinical data concerning hypercapnia and respiratory infections interaction is limited. AREAS COVERED: Currently, the relationship between hypercapnia and respiratory infections remains unclear. In this review, we summarize studies on the effects of hypercapnia on models of pulmonary infections to clarify the role of elevated CO2 in these pulmonary pathologies. Hypercapnia affects different cell types in the alveoli, leading to changes in the immune response. In vitro studies show that hypercapnia downregulates the NF-κß pathway, reduces inflammation and impairs epithelial wound healing. While in vivo models show a dual role between short- and long-term effects of hypercapnia on lung infection. However, it is still controversial whether the effects observed under hypercapnia are pH dependent or not. EXPERT OPINION: The role of hypercapnia is still a controversial debate. Hypercapnia could play a beneficial role in mechanically ventilated models, by lowering the inflammation produced by the stretch condition. But it could be detrimental in infectious scenarios, causing phagocyte dysfunction and lack of infection control. Further data concerning hypercapnia on respiratory infections is needed to elucidate this interaction.


Subject(s)
Hypercapnia , Respiratory Tract Infections , Humans , Lung , Inflammation , Pulmonary Alveoli/metabolism
2.
Pulm Ther ; 9(4): 499-510, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917322

ABSTRACT

INTRODUCTION: Awake prone positioning has the potential to improve oxygenation and decrease respiratory rate, potentially reducing the need for intubation in patients with acute hypoxemic respiratory failure. We investigated awake prone positioning-induced changes in oxygenation and respiratory rate, and the prognostic capacity for intubation in patients with COVID-19 pneumonia. METHODS: International multicenter prospective observation study in critically ill adult patients with COVID-19 receiving supplemental oxygen. We collected data on oxygenation and respiratory rate at baseline, and at 1 h after being placed in prone positioning. The combined primary outcome was oxygenation and respiratory rate at 1 h. The secondary endpoint was treatment failure, defined as need for intubation within 24 h of start of awake prone positioning. RESULTS: Between March 27th and November 2020, 101 patients were enrolled of which 99 were fully analyzable. Awake prone positioning lasted mean of 3 [2-4] h. In 77 patients (77.7%), awake prone positioning improved oxygenation, and in 37 patients (54.4%) it decreased respiratory rate. Twenty-nine patients (29.3%) were intubated within 24 h. An increase in SpO2/FiO2 of < 10 (OR 5.1, 95% CI 1.4-18.5, P = 0.01), a failure to increase PaO2/FiO2 to > 116 mmHg (OR 3.6, 95% CI 1.2-10.8, P = 0.02), and a decrease in respiratory rate of < 2 breaths/min (OR 3.6, 95% CI 1.3-9.5, P = 0.01) were independent variables associated with need for intubation. The AUC-ROC curve for intubation using a multivariable model was 0.73 (95% CI 0.62-0.84). CONCLUSIONS: Awake prone positioning improves oxygenation in the majority of patients, and decreases respiratory rate in more than half of patients with acute hypoxemic respiratory failure caused by COVID-19. One in three patients need intubation within 24 h. Awake prone position-induced changes in oxygenation and respiratory rate have prognostic capacity for intubation within 24 h.

3.
Biomedicines ; 11(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37893050

ABSTRACT

BACKGROUND: Ventilator-associated pneumonia (VAP) is a severe condition. Early and adequate antibiotic treatment is the most important strategy for improving prognosis. Pancreatic Stone Protein (PSP) has been described as a biomarker that increases values 3-4 days before the clinical diagnosis of nosocomial sepsis in different clinical settings. We hypothesized that serial measures of PSP and its kinetics allow for an early diagnosis of VAP. METHODS: The BioVAP study was a prospective observational study designed to evaluate the role of biomarker dynamics in the diagnosis of VAP. To determine the association between repeatedly measured PSP and the risk of VAP, we used joint models for longitudinal and time-to-event data. RESULTS: Of 209 patients, 43 (20.6%) patients developed VAP, with a median time of 4 days. Multivariate joint models with PSP, CRP, and PCT did not show an association between biomarkers and VAP for the daily absolute value, with a hazard ratio (HR) for PSP of 1.01 (95% credible interval: 0.97 to 1.05), for CRP of 1.00 (0.83 to 1.22), and for PCT of 0.95 (0.82 to 1.08). The daily change of biomarkers provided similar results, with an HR for PSP of 1.15 (0.94 to 1.41), for CRP of 0.76 (0.35 to 1.58), and for PCT of 0.77 (0.40 to 1.45). CONCLUSION: Neither absolute PSP values nor PSP kinetics alone nor in combination with other biomarkers were useful in improving the prediction diagnosis accuracy in patients with VAP. CLINICAL TRIAL REGISTRATION: Registered retrospectively on August 3rd, 2012. NCT02078999.

4.
J Clin Med ; 11(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35628822

ABSTRACT

Patients with COVID-19 may complicate their evolution with thromboembolic events. Incidence of thromboembolic complications are high and also, patients with the critically-ill disease showed evidence of microthrombi and microangiopathy in the lung probably due to endothelial damage by directly and indirectly injured endothelial and epithelial cells. Pulmonary embolism, deep venous thrombosis and arterial embolism were reported in patients with COVID-19, and several analytical abnormal coagulation parameters have been described as well. D-dimer, longer coagulation times and lower platelet counts have been associated with poor outcomes. The use of anticoagulation or high doses of prophylactic heparin is controversial. Despite the use of anticoagulation or high prophylactic dose of heparin have been associated with better outcomes in observational studies, only in patients with non-critically ill disease benefits for anticoagulation was observed. In critically-ill patient, anticoagulation was not associated with better outcomes. Other measures such as antiplatelet therapy, fibrinolytic therapy or nebulized anticoagulants are being studied in ongoing clinical trials.

5.
J Crit Care ; 69: 154022, 2022 06.
Article in English | MEDLINE | ID: mdl-35339900

ABSTRACT

PURPOSE: We determined the incidence of hypercapnia and associations with outcome in invasively ventilated COVID-19 patients. METHODS: Posthoc analysis of a national, multicenter, observational study in 22 ICUs. Patients were classified as 'hypercapnic' or 'normocapnic' in the first three days of invasive ventilation. Primary endpoint was prevalence of hypercapnia. Secondary endpoints were ventilator parameters, length of stay (LOS) in ICU and hospital, and mortality in ICU, hospital, at day 28 and 90. RESULTS: Of 824 patients, 485 (58.9%) were hypercapnic. Hypercapnic patients had a higher BMI and had COPD, severe ARDS and venous thromboembolic events more often. Hypercapnic patients were ventilated with lower tidal volumes, higher respiratory rates, higher driving pressures, and with more mechanical power of ventilation. Hypercapnic patients had comparable minute volumes but higher ventilatory ratios than normocapnic patients. In hypercapnic patients, ventilation and LOS in ICU and hospital was longer, but mortality was comparable to normocapnic patients. CONCLUSION: Hypercapnia occurs often in invasively ventilated COVID-19 patients. Main differences between hypercapnic and normocapnic patients are severity of ARDS, occurrence of venous thromboembolic events, and a higher ventilation ratio. Hypercapnia has an association with duration of ventilation and LOS in ICU and hospital, but not with mortality.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/complications , COVID-19/therapy , Humans , Hypercapnia , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/etiology
6.
Crit Care ; 25(1): 171, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001222

ABSTRACT

BACKGROUND: Estimates for dead space ventilation have been shown to be independently associated with an increased risk of mortality in the acute respiratory distress syndrome and small case series of COVID-19-related ARDS. METHODS: Secondary analysis from the PRoVENT-COVID study. The PRoVENT-COVID is a national, multicenter, retrospective observational study done at 22 intensive care units in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The aim was to quantify the dynamics and determine the prognostic value of surrogate markers of wasted ventilation in patients with COVID-19-related ARDS. RESULTS: A total of 927 consecutive patients admitted with COVID-19-related ARDS were included in this study. Estimations of wasted ventilation such as the estimated dead space fraction (by Harris-Benedict and direct method) and ventilatory ratio were significantly higher in non-survivors than survivors at baseline and during the following days of mechanical ventilation (p < 0.001). The end-tidal-to-arterial PCO2 ratio was lower in non-survivors than in survivors (p < 0.001). As ARDS severity increased, mortality increased with successive tertiles of dead space fraction by Harris-Benedict and by direct estimation, and with an increase in the VR. The same trend was observed with decreased levels in the tertiles for the end-tidal-to-arterial PCO2 ratio. After adjustment for a base risk model that included chronic comorbidities and ventilation- and oxygenation-parameters, none of the dead space estimates measured at the start of ventilation or the following days were significantly associated with 28-day mortality. CONCLUSIONS: There is significant impairment of ventilation in the early course of COVID-19-related ARDS but quantification of this impairment does not add prognostic information when added to a baseline risk model. TRIAL REGISTRATION: ISRCTN04346342. Registered 15 April 2020. Retrospectively registered.


Subject(s)
COVID-19/mortality , Patient Acuity , Respiration, Artificial , Respiratory Dead Space , Respiratory Distress Syndrome/therapy , Adult , Biomarkers , COVID-19/complications , COVID-19/physiopathology , Female , Humans , Intensive Care Units , Male , Prognosis , ROC Curve , Respiratory Distress Syndrome/etiology , Respiratory Function Tests , Respiratory Mechanics , Retrospective Studies
7.
Am J Trop Med Hyg ; 104(5): 1676-1686, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33705348

ABSTRACT

Non-intubated patients with acute respiratory failure due to COVID-19 could benefit from awake proning. Awake proning is an attractive intervention in settings with limited resources, as it comes with no additional costs. However, awake proning remains poorly used probably because of unfamiliarity and uncertainties regarding potential benefits and practical application. To summarize evidence for benefit and to develop a set of pragmatic recommendations for awake proning in patients with COVID-19 pneumonia, focusing on settings where resources are limited, international healthcare professionals from high and low- and middle-income countries (LMICs) with known expertise in awake proning were invited to contribute expert advice. A growing number of observational studies describe the effects of awake proning in patients with COVID-19 pneumonia in whom hypoxemia is refractory to simple measures of supplementary oxygen. Awake proning improves oxygenation in most patients, usually within minutes, and reduces dyspnea and work of breathing. The effects are maintained for up to 1 hour after turning back to supine, and mostly disappear after 6-12 hours. In available studies, awake proning was not associated with a reduction in the rate of intubation for invasive ventilation. Awake proning comes with little complications if properly implemented and monitored. Pragmatic recommendations including indications and contraindications were formulated and adjusted for resource-limited settings. Awake proning, an adjunctive treatment for hypoxemia refractory to supplemental oxygen, seems safe in non-intubated patients with COVID-19 acute respiratory failure. We provide pragmatic recommendations including indications and contraindications for the use of awake proning in LMICs.


Subject(s)
COVID-19/complications , Hypoxia/therapy , Prone Position/physiology , Respiratory Insufficiency/therapy , SARS-CoV-2 , Acute Disease , Continuous Positive Airway Pressure , Health Personnel , Humans , Wakefulness
8.
Intensive Care Med Exp ; 8(Suppl 1): 62, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33336290

ABSTRACT

BACKGROUND: The animal experimental counterpart of human acute respiratory distress syndrome (ARDS) is acute lung injury (ALI). Most models of ALI involve reproducing the clinical risk factors associated with human ARDS, such as sepsis or acid aspiration; however, none of these models fully replicates human ARDS. AIM: To compare different experimental animal models of ALI, based on direct or indirect mechanisms of lung injury, to characterize a model which more closely could reproduce the acute phase of human ARDS. MATERIALS AND METHODS: Adult male Sprague-Dawley rats were subjected to intratracheal instillations of (1) HCl to mimic aspiration of gastric contents; (2) lipopolysaccharide (LPS) to mimic bacterial infection; (3) HCl followed by LPS to mimic aspiration of gastric contents with bacterial superinfection; or (4) cecal ligation and puncture (CLP) to induce peritonitis and mimic sepsis. Rats were sacrificed 24 h after instillations or 24 h after CLP. RESULTS: At 24 h, rats instilled with LPS or HCl-LPS had increased lung permeability, alveolar neutrophilic recruitment and inflammatory markers (GRO/KC, TNF-α, MCP-1, IL-1ß, IL-6). Rats receiving only HCl or subjected to CLP had no evidence of lung injury. CONCLUSIONS: Rat models of ALI induced directly by LPS or HCl-LPS more closely reproduced the acute phase of human ARDS than the CLP model of indirectly induced ALI.

10.
Ann Intensive Care ; 9(1): 128, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31754866

ABSTRACT

BACKGROUND: Indirect indices for measuring impaired ventilation, such as the estimated dead space fraction and the ventilatory ratio, have been shown to be independently associated with an increased risk of mortality. This study aimed to compare various methods for dead space estimation and the ventilatory ratio in patients with acute respiratory distress syndrome (ARDS) and to determine their independent values for predicting death at day 30. The present study is a post hoc analysis of a prospective observational cohort study of ICUs of two tertiary care hospitals in the Netherlands. RESULTS: Individual patient data from 940 ARDS patients were analyzed. Estimated dead space fraction and the ventilatory ratio at days 1 and 2 were significantly higher among non-survivors (p < 0.01). Dead space fraction calculation using the estimate from physiological variables [VD/VT phys] and the ventilatory ratio at day 2 showed independent association with mortality at 30 days (odds ratio 1.28 [95% CI 1.02-1.61], p < 0.03 and 1.20 [95% CI, 1.01-1.40], p < 0.03, respectively); whereas, the Harris-Benedict [VD/VT HB] and Penn State [VD/VT PS] estimations were not associated with mortality. The predicted validity of the estimated dead space fraction and the ventilatory ratio improved the baseline model based on PEEP, PaO2/FiO2, driving pressure and compliance of the respiratory system at day 2 (AUROCC 0.72 vs. 0.69, p < 0.05). CONCLUSIONS: Estimated methods for dead space calculation and the ventilatory ratio during the early course of ARDS are associated with mortality at day 30 and add statistically significant but limited improvement in the predictive accuracy to indices of oxygenation and respiratory system mechanics at the second day of mechanical ventilation.

11.
Ann Intensive Care ; 9(1): 79, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31267300

ABSTRACT

In the past, the only treatment of acute exacerbations of obstructive diseases with hypercapnic respiratory failure refractory to medical treatment was invasive mechanical ventilation (IMV). Considerable technical improvements transformed extracorporeal techniques for carbon dioxide removal in an attractive option to avoid worsening respiratory failure and respiratory acidosis, and to potentially prevent or shorten the duration of IMV in patients with exacerbation of COPD and asthma. In this review, we will present a summary of the pathophysiological rationale and evidence of ECCO2R in patients with severe exacerbations of these pathologies.

12.
Intensive Care Med Exp ; 7(Suppl 1): 39, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31346806

ABSTRACT

The biological effects and physiological consequences of hypercapnia are increasingly understood. The literature on hypercapnia is confusing, and at times contradictory. On the one hand, it may have protective effects through attenuation of pulmonary inflammation and oxidative stress. On the other hand, it may also have deleterious effects through inhibition of alveolar wound repair, reabsorption of alveolar fluid, and alveolar cell proliferation. Besides, hypercapnia has meaningful effects on lung physiology such as airway resistance, lung oxygenation, diaphragm function, and pulmonary vascular tree.In acute respiratory distress syndrome, lung-protective ventilation strategies using low tidal volume and low airway pressure are strongly advocated as these have strong potential to improve outcome. These strategies may come at a price of hypercapnia and hypercapnic acidosis. One approach is to accept it (permissive hypercapnia); another approach is to treat it through extracorporeal means. At present, it remains uncertain what the best approach is.

13.
Med. intensiva (Madr., Ed. impr.) ; 43(4): 234-242, mayo 2019. graf
Article in Spanish | IBECS | ID: ibc-183128

ABSTRACT

En los últimos años han surgido importantes descubrimientos sobre el papel del dióxido de carbono (CO2) a nivel celular y molecular, y sobre los efectos de la hipercapnia. Esta última puede tener efectos beneficiosos en pacientes con patología pulmonar aguda, como la reducción de la inflamación pulmonar y del daño oxidativo alveolar, la regulación de la inmunidad innata, la defensa del huésped y la inhibición de la expresión de citoquinas inflamatorias. Sin embargo, otros estudios sugieren que el CO2 puede tener efectos nocivos en el pulmón, como retraso en la reparación alveolar tras la injuria pulmonar, disminución de las tasas de reabsorción del fluido alveolar e inhibición de la proliferación de células alveolares. Por lo tanto, la hipercapnia tiene efectos tanto beneficiosos como nocivos y es importante determinar el efecto neto en condiciones específicas. El propósito de esta revisión es describir los efectos fisiológicos e inmunomoduladores de la hipercapnia, considerando sus potenciales consecuencias en el paciente con insuficiencia respiratoria aguda


Important recent insights have emerged regarding the cellular and molecular role of carbon dioxide (CO2) and the effects of hypercapnia. The latter may have beneficial effects in patients with acute lung injury, affording reductions in pulmonary inflammation, lessened oxidative alveolar damage, and the regulation of innate immunity and host defenses by inhibiting the expression of inflammatory cytokines. However, other studies suggest that CO2 can have deleterious effects upon the lung, reducing alveolar wound repair in lung injury, decreasing the rate of reabsorption of alveolar fluid, and inhibiting alveolar cell proliferation. Clearly, hypercapnia has both beneficial and harmful consequences, and it is important to determine the net effect under specific conditions. The purpose of this review is to describe the immunological and physiological effects of carbon dioxide, considering their potential consequences in patients with acute respiratory failure


Subject(s)
Humans , Carbon Dioxide/therapeutic use , Critical Care , Hypercapnia/drug therapy , Carbon Dioxide/adverse effects , Respiratory Insufficiency/complications , Respiratory Insufficiency/drug therapy , Respiration, Artificial/adverse effects , Acidosis, Respiratory/drug therapy
14.
Med Intensiva (Engl Ed) ; 43(4): 234-242, 2019 May.
Article in English, Spanish | MEDLINE | ID: mdl-29486904

ABSTRACT

Important recent insights have emerged regarding the cellular and molecular role of carbon dioxide (CO2) and the effects of hypercapnia. The latter may have beneficial effects in patients with acute lung injury, affording reductions in pulmonary inflammation, lessened oxidative alveolar damage, and the regulation of innate immunity and host defenses by inhibiting the expression of inflammatory cytokines. However, other studies suggest that CO2 can have deleterious effects upon the lung, reducing alveolar wound repair in lung injury, decreasing the rate of reabsorption of alveolar fluid, and inhibiting alveolar cell proliferation. Clearly, hypercapnia has both beneficial and harmful consequences, and it is important to determine the net effect under specific conditions. The purpose of this review is to describe the immunological and physiological effects of carbon dioxide, considering their potential consequences in patients with acute respiratory failure.


Subject(s)
Carbon Dioxide/physiology , Carbon Dioxide/therapeutic use , Critical Illness , Humans , Hypercapnia , Pulmonary Alveoli/cytology , Pulmonary Alveoli/physiology , Respiratory Distress Syndrome/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...