Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 13: 766306, 2021.
Article in English | MEDLINE | ID: mdl-34924995

ABSTRACT

The decline in brain function during aging is one of the most critical health problems nowadays. Although senescent astrocytes have been found in old-age brains and neurodegenerative diseases, their impact on the function of other cerebral cell types is unknown. The aim of this study was to evaluate the effect of senescent astrocytes on the mitochondrial function of a neuron. In order to evaluate neuronal susceptibility to a long and constant senescence-associated secretory phenotype (SASP) exposure, we developed a model by using cellular cocultures in transwell plates. Rat primary cortical astrocytes were seeded in transwell inserts and induced to premature senescence with hydrogen peroxide [stress-induced premature senescence (SIPS)]. Independently, primary rat cortical neurons were seeded at the bottom of transwells. After neuronal 6 days in vitro (DIV), the inserts with SIPS-astrocytes were placed in the chamber and cocultured with neurons for 6 more days. The neuronal viability, the redox state [reduced glutathione/oxidized glutathione (GSH/GSSG)], the mitochondrial morphology, and the proteins and membrane potential were determined. Our results showed that the neuronal mitochondria functionality was altered after being cocultured with senescent astrocytes. In vivo, we found that old animals had diminished mitochondrial oxidative phosphorylation (OXPHOS) proteins, redox state, and senescence markers as compared to young rats, suggesting effects of the senescent astrocytes similar to the ones we observed in vitro. Overall, these results indicate that the microenvironment generated by senescent astrocytes can affect neuronal mitochondria and physiology.

2.
Biogerontology ; 19(5): 415-433, 2018 10.
Article in English | MEDLINE | ID: mdl-30097900

ABSTRACT

In the central nervous system (CNS), senescent astrocytes have been associated with neurodegeneration. Senescent cells secrete a complex mixture of pro-inflammatory factors, which are collectively called Senescence Associated Secretory Phenotype (SASP). The SASP components can vary depending on the cell type, senescence inducer and time. The SASP has been mainly studied in fibroblasts and epithelial cells, but little is known in the context of the CNS. Here, the SASP profile in senescent astrocytes isolated from Wistar newborn rats induced to senescence by oxidative stress or by proteasome inhibition was analyzed. Senescent astrocytes secreted predominantly chemokines and IL-1α, but no IL-6. The effect of the anti-inflammatory drugs, sulforaphane (SFN) and dehydroepiandrosterone (DHEA), on the SASP profile was evaluated. Our results showed that SFN and DHEA decreased IL-1α secretion while increasing IL-10, thus modifying the SASP to a less anti-inflammatory profile. Primary neurons were subjected to the conditioned media obtained from drug-treated senescent astrocytes, and their mitochondrial membrane potential was evaluated.


Subject(s)
Astrocytes , Cellular Senescence , Central Nervous System , Dehydroepiandrosterone/pharmacology , Isothiocyanates/pharmacology , Neurons , Animals , Animals, Newborn , Anti-Inflammatory Agents/pharmacology , Astrocytes/drug effects , Astrocytes/immunology , Cellular Senescence/drug effects , Cellular Senescence/immunology , Central Nervous System/drug effects , Central Nervous System/immunology , Central Nervous System/metabolism , Inflammation , Interleukin-1alpha/immunology , Membrane Potential, Mitochondrial/drug effects , Models, Animal , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/physiology , Rats , Rats, Wistar , Sulfoxides
3.
Antioxid Redox Signal ; 28(18): 1704-1723, 2018 06 20.
Article in English | MEDLINE | ID: mdl-28467755

ABSTRACT

SIGNIFICANCE: Cellular senescence, characterized by permanent cell cycle arrest, has been extensively studied in mitotic cells such as fibroblasts. However, senescent cells have also been observed in the brain. Even though it is recognized that cellular energetic metabolism and redox homeostasis are perturbed in the aged brain and neurodegenerative diseases (NDDs), it is still unknown which alterations in the overall physiology can stimulate cellular senescence induction and their relationship with the former events. Recent Advances: Recent findings have shown that during prolonged inflammatory and pathologic events, the blood-brain barrier could be compromised and immune cells might enter the brain; this fact along with the brain's high oxygen dependence might result in oxidative damage to macromolecules and therefore senescence induction. Thus, cellular senescence in different brain cell types is revised here. CRITICAL ISSUES: Most information related to cellular senescence in the brain has been obtained from research in glial cells since it has been assumed that the senescent phenotype is a feature exclusive to mitotic cells. Nevertheless, neurons with senescence hallmarks have been observed in old mouse brains. Therefore, although this is a controversial topic in the field, here we summarize and integrate the observations from several studies and propose that neurons indeed senesce. FUTURE DIRECTIONS: It is still unknown which alterations in the overall metabolism can stimulate senescence induction in the aged brain, what are the mechanisms and signaling pathways, and what is their relationship to NDD development. The understanding of these processes will expose new targets to intervene age-associated pathologies.-Antioxid. Redox Signal. 28, 1704-1723.


Subject(s)
Brain/cytology , Brain/metabolism , Cellular Senescence , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/metabolism , Animals , Humans , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...