Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Oral Microbiol ; 16(1): 2322228, 2024.
Article in English | MEDLINE | ID: mdl-38420038

ABSTRACT

Background: Nitrate (NO3-) has been suggested as a prebiotic for oral health. Evidence indicates dietary nitrate and nitrate supplements can increase the proportion of bacterial genera associated with positive oral health whilst reducing bacteria implicated in oral disease(s). In contrast, chlorhexidine-containing mouthwashes, which are commonly used to treat oral infections, promote dysbiosis of the natural microflora and may induce antimicrobial resistance. Methods: A systematic review of the literature was undertaken, surrounding the effects of nitrate on the oral microbiota. Results: Overall, n = 12 in vivo and in vitro studies found acute and chronic nitrate exposure increased (representatives of) health-associated Neisseria and Rothia (67% and 58% of studies, respectively) whilst reducing periodontal disease-associated Prevotella (33%). Additionally, caries-associated Veillonella and Streptococcus decreased (25% for both genera). Nitrate also altered oral microbiome metabolism, causing an increase in pH levels (n = 5), which is beneficial to limit caries development. Secondary findings highlighted the benefits of nitrate for systemic health (n = 5). Conclusions: More clinical trials are required to confirm the impact of nitrate on oral communities. However, these findings support the hypothesis that nitrate could be used as an oral health prebiotic. Future studies should investigate whether chlorhexidine-containing mouthwashes could be replaced or complemented by a nitrate-rich diet or nitrate supplementation.

2.
Pathogens ; 11(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35215164

ABSTRACT

Cases of amoebic keratitis involving species other than Acanthamoeba are hypothesised to be underdiagnosed and poorly understood. Amoebic keratitis is debilitating and associated with chronic visual impairment. Understanding associated symptoms of non-Acanthamoeba amoebic keratitis could facilitate new diagnostic procedures and enable prompt treatment, ultimately leading to improved patient outcomes. Thus, a review of the literature was undertaken surrounding non-Acanthamoeba amoebic keratitis. Cases were geographically widespread and mostly confined to contact lens wearers ≤ 30 years old exposed to contaminated water sources and/or demonstrating poor lens hygiene. Vermamoeba vermiformis (previously Hartmanella vermiformis) was the most common causative agent, and a moderate number of mixed keratitis cases were also reported. A crucial disease indicator was early onset stromal deterioration/ulcerations, reported in 10 of the studies, usually only occurring in advanced Acanthamoeba keratitis. Mixed infections were the most difficult to treat, often requiring keratoplasty after unsuccessful combination treatment regimens. New diagnostic measures for non-Acanthamoeba amoebic keratitis should consider early onset stromal disease as a key disease indicator. Deep corneal scrapes are also necessary for accurate amoebic identification. Moreover, a combination approach to diagnosis is advised and should involve culture, microscopy and PCR techniques. In vitro drug sensitivity tests should also be conducted to help develop patient-specific treatment regimes.

3.
Gynecol Oncol Rep ; 37: 100804, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34189228

ABSTRACT

•Virtual follow up is acceptable to gynecological oncology patients.•Some patients may be reluctant to sit in waiting rooms post pandemic.•Lack of physical examination did not affect most patients' appointments.

5.
Int J Sport Nutr Exerc Metab ; 21(4): 347-51, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21813918

ABSTRACT

The aim of this case study was to describe the race nutrition practices of a female runner who completed her first 100-km off-road ultraendurance running event in 12 hr 48 min 55 s. Food and fluid intake during the race provided 10,890 kJ (736 kJ/hr) and 6,150 ml (415 ml/hr) of fluid. Hourly reported carbohydrate intake was 44 g, with 34% provided by sports drink. Hourly carbohydrate intake increased in the second half (53 g/hr) compared with the first half (34 g/h) of the race, as the athlete did not have access to individualized food and fluid choices at the early checkpoints and felt satiated in the early stages of the race after consuming a prerace breakfast. Mean sodium intake was 500 mg/hr (52 mmol/L), with a homemade savory broth and sports drink (Gatorade Endurance) being the major contributors. The athlete consumed a variety of foods of varying textures and tastes with no complaints of gastrointestinal discomfort. Despite thinking she would consume sweet foods exclusively, as she had done in training, the athlete preferred savory foods and fluids at checkpoints during the latter stages of the race. This case study highlights the importance of the sports nutrition team in educating athletes about race-day nutrition strategies and devising a simple yet effective system to allow them to manipulate their race-day food and fluid intake to meet their nutritional goals.


Subject(s)
Energy Intake , Nutritional Physiological Phenomena , Physical Endurance , Running , Adult , Athletes , Female , Guidelines as Topic , Humans , Nutritional Requirements , Sports
6.
Mar Biotechnol (NY) ; 12(5): 534-42, 2010 Oct.
Article in English | MEDLINE | ID: mdl-19946723

ABSTRACT

Diarrhetic shellfish toxin-producing Dinophysis species occur in Irish coastal waters throughout the year. Dinophysis acuta and Dinophysis acuminata are the most commonly occurring species and are responsible for the majority of closures of Irish mussel farms. This study describes the development of a qualitative real-time polymerase chain reaction (PCR) assay for identification of D. acuta and D. acuminata in Irish coastal waters. DNA sequence information for the D1-D2 region of the large ribosomal sub-unit (LSU) was obtained, following single-cell PCR of D. acuta and D. acuminata cells isolated from Irish coastal locations. PCR primers and hybridization probes, specific for the detection of D. acuta, were designed for real-time PCR on the LightCycler™. The LightCycler™ software melt curve analysis programme determined that D. acuta was identified by a melt-peak at 61°C, while D. acuminata cells produced a melt peak at 48°C. The limit of detection of the real-time PCR assay was determined to be one to ten plasmid copies of the LSU D1-D2 target region for both species and one to five D. acuminata cells. Lugol's preserved water samples were also tested with the assay. The real-time PCR assay identified Dinophysis species in 100% of samples found to contain Dinophysis species by light microscopy and had a greater than 90% correlation with light microscopy for identification of D. acuta and D. acuminata in the samples. The assay can identify and discriminate D. acuta and D. acuminata at low numbers in Irish waters and has the potential to add value to the Irish phytoplankton monitoring programme.


Subject(s)
Dinoflagellida/classification , Dinoflagellida/genetics , Reverse Transcriptase Polymerase Chain Reaction , Dinoflagellida/cytology , Ireland , Oceans and Seas , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL