Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Psychol Med ; 48(1): 82-94, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28545597

ABSTRACT

BACKGROUND: Our understanding of the complex relationship between schizophrenia symptomatology and etiological factors can be improved by studying brain-based correlates of schizophrenia. Research showed that impairments in value processing and executive functioning, which have been associated with prefrontal brain areas [particularly the medial orbitofrontal cortex (MOFC)], are linked to negative symptoms. Here we tested the hypothesis that MOFC thickness is associated with negative symptom severity. METHODS: This study included 1985 individuals with schizophrenia from 17 research groups around the world contributing to the ENIGMA Schizophrenia Working Group. Cortical thickness values were obtained from T1-weighted structural brain scans using FreeSurfer. A meta-analysis across sites was conducted over effect sizes from a model predicting cortical thickness by negative symptom score (harmonized Scale for the Assessment of Negative Symptoms or Positive and Negative Syndrome Scale scores). RESULTS: Meta-analytical results showed that left, but not right, MOFC thickness was significantly associated with negative symptom severity (ß std = -0.075; p = 0.019) after accounting for age, gender, and site. This effect remained significant (p = 0.036) in a model including overall illness severity. Covarying for duration of illness, age of onset, antipsychotic medication or handedness weakened the association of negative symptoms with left MOFC thickness. As part of a secondary analysis including 10 other prefrontal regions further associations in the left lateral orbitofrontal gyrus and pars opercularis emerged. CONCLUSIONS: Using an unusually large cohort and a meta-analytical approach, our findings point towards a link between prefrontal thinning and negative symptom severity in schizophrenia. This finding provides further insight into the relationship between structural brain abnormalities and negative symptoms in schizophrenia.


Subject(s)
Prefrontal Cortex/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Adult , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted , Internationality , Linear Models , Magnetic Resonance Imaging , Male , Prefrontal Cortex/diagnostic imaging , Psychiatric Status Rating Scales , Schizophrenic Psychology
2.
Acta Psychiatr Scand ; 135(5): 439-447, 2017 May.
Article in English | MEDLINE | ID: mdl-28369804

ABSTRACT

OBJECTIVE: Based on the role of the superior temporal gyrus (STG) in auditory processing, language comprehension and self-monitoring, this study aimed to investigate the relationship between STG cortical thickness and positive symptom severity in schizophrenia. METHOD: This prospective meta-analysis includes data from 1987 individuals with schizophrenia collected at seventeen centres around the world that contribute to the ENIGMA Schizophrenia Working Group. STG thickness measures were extracted from T1-weighted brain scans using FreeSurfer. The study performed a meta-analysis of effect sizes across sites generated by a model predicting left or right STG thickness with a positive symptom severity score (harmonized SAPS or PANSS-positive scores), while controlling for age, sex and site. Secondary models investigated relationships between antipsychotic medication, duration of illness, overall illness severity, handedness and STG thickness. RESULTS: Positive symptom severity was negatively related to STG thickness in both hemispheres (left: ßstd = -0.052; P = 0.021; right: ßstd = -0.073; P = 0.001) when statistically controlling for age, sex and site. This effect remained stable in models including duration of illness, antipsychotic medication or handedness. CONCLUSION: Our findings further underline the important role of the STG in hallmark symptoms in schizophrenia. These findings can assist in advancing insight into symptom-relevant pathophysiological mechanisms in schizophrenia.


Subject(s)
Magnetic Resonance Imaging/methods , Schizophrenia/diagnostic imaging , Temporal Lobe/diagnostic imaging , Adult , Brain Mapping/methods , Female , Humans , Male , Prospective Studies , Psychiatric Status Rating Scales , Schizophrenia/pathology , Schizophrenic Psychology , Temporal Lobe/pathology
3.
Acta Psychiatr Scand ; 135(2): 117-126, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27925164

ABSTRACT

OBJECTIVE: The effect of antipsychotic medication on brain structure remains unclear. Given the prevalence of weight gain as a side-effect, body mass index (BMI) change could be a confounder. METHOD: Patients with first-episode psychosis (n = 78) and healthy controls (n = 119) underwent two 1.5T MRI scans with a 1-year follow-up interval. siena (fsl 5.0) was used to measure whole-brain volume change. Weight and height were measured at both time points. Antipsychotic medication use at baseline and follow-up was converted into chlorpromazine equivalent dose and averaged. RESULTS: Patients did not show significantly larger brain volume loss compared with healthy controls. In the whole sample (n = 197), BMI change was negatively associated with brain volume change (ß = -0.19, P = 0.008); there was no interaction effect of group. Among patients, higher antipsychotic medication dosage was associated with greater brain volume loss (ß = -0.45, P < 0.001). This association was not affected by adjusting for BMI change. CONCLUSION: Weight gain was related to brain volume reductions to a similar degree among patients and controls. Antipsychotic dosage-related reductions of brain volume were not confounded by BMI change. Generalizability to contexts involving severe weight gain needs to be established. Furthermore, disentangling effects of medication from illness severity remains a challenge.


Subject(s)
Antipsychotic Agents/therapeutic use , Brain/diagnostic imaging , Chlorpromazine/therapeutic use , Psychotic Disorders/drug therapy , Adult , Antipsychotic Agents/pharmacology , Body Mass Index , Brain/drug effects , Chlorpromazine/pharmacology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Young Adult
4.
Psychol Med ; 47(4): 655-668, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27830632

ABSTRACT

BACKGROUND: Excessive alcohol use is associated with brain damage but less is known about brain effects from moderate alcohol use. Previous findings indicate that patients with severe mental illness, particularly schizophrenia, are vulnerable to alcohol-related brain damage. We investigated the association between levels of alcohol consumption and cortical and subcortical brain structures in schizophrenia and bipolar disorder patients and healthy controls, and investigated for group differences for this association. METHOD: 1.5 T structural magnetic resonance images were acquired of 609 alcohol-using participants (165 schizophrenia patients, 172 bipolar disorder patients, 272 healthy controls), mean (s.d.) age 34.2 (9.9) years, 52% men. Past year alcohol use was assessed with the Alcohol Use Disorder Identification Test - Consumption part (AUDIT-C). General linear models were used to investigate associations between AUDIT-C score and cortical thickness, surface area, and total brain and subcortical volumes. RESULTS: Increasing AUDIT-C score was linearly associated with thinner cortex in medial and dorsolateral frontal and parieto-occipital regions, and with larger left lateral ventricle volume. There was no significant interaction between AUDIT-C score and diagnostic group. The findings remained significant after controlling for substance use disorders, antipsychotic medication and illness severity. CONCLUSION: The results show a dose-dependent relationship between alcohol use and thinner cortex and ventricular expansion. The findings are present also at lower levels of alcohol consumption and do not differ between schizophrenia or bipolar disorder patients compared to healthy controls. Our results do not support previous findings of increased vulnerability for alcohol-related brain damage in severe mental illness.


Subject(s)
Alcohol Drinking/adverse effects , Alcohol Drinking/pathology , Bipolar Disorder/pathology , Cerebral Cortex/pathology , Cerebral Ventricles/pathology , Schizophrenia/pathology , Adult , Bipolar Disorder/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Cerebral Ventricles/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Schizophrenia/diagnostic imaging
5.
Psychol Med ; 46(9): 1971-85, 2016 07.
Article in English | MEDLINE | ID: mdl-27049014

ABSTRACT

BACKGROUND: Schizophrenia and bipolar disorder share genetic risk factors and one possible illness mechanism is abnormal myelination. T1-weighted magnetic resonance imaging (MRI) tissue intensities are sensitive to myelin content. Therefore, the contrast between grey- and white-matter intensities may reflect myelination along the cortical surface. METHOD: MRI images were obtained from patients with schizophrenia (n = 214), bipolar disorder (n = 185), and healthy controls (n = 278) and processed in FreeSurfer. The grey/white-matter contrast was computed at each vertex as the difference between average grey-matter intensity (sampled 0-60% into the cortical ribbon) and average white-matter intensity (sampled 0-1.5 mm into subcortical white matter), normalized by their average. Group differences were tested using linear models covarying for age and sex. RESULTS: Patients with schizophrenia had increased contrast compared to controls bilaterally in the post- and precentral gyri, the transverse temporal gyri and posterior insulae, and in parieto-occipital regions. In bipolar disorder, increased contrast was primarily localized in the left precentral gyrus. There were no significant differences between schizophrenia and bipolar disorder. Findings of increased contrast remained after adjusting for cortical area, thickness, and gyrification. We found no association with antipsychotic medication dose. CONCLUSIONS: Increased contrast was found in highly myelinated low-level sensory and motor regions in schizophrenia, and to a lesser extent in bipolar disorder. We propose that these findings indicate reduced intracortical myelin. In accordance with the corollary discharge hypothesis, this could cause disinhibition of sensory input, resulting in distorted perceptual processing leading to the characteristic positive symptoms of schizophrenia.


Subject(s)
Bipolar Disorder/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Schizophrenia/diagnostic imaging , White Matter/diagnostic imaging , Adult , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...