Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 80(13): 2889-2902, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32350067

ABSTRACT

The protein tyrosine phosphatase SHP2 binds to phosphorylated signaling motifs on regulatory immunoreceptors including PD-1, but its functional role in tumor immunity is unclear. Using preclinical models, we show that RMC-4550, an allosteric inhibitor of SHP2, induces antitumor immunity, with effects equivalent to or greater than those resulting from checkpoint blockade. In the tumor microenvironment, inhibition of SHP2 modulated T-cell infiltrates similar to checkpoint blockade. In addition, RMC-4550 drove direct, selective depletion of protumorigenic M2 macrophages via attenuation of CSF1 receptor signaling and increased M1 macrophages via a mechanism independent of CD8+ T cells or IFNγ. These dramatic shifts in polarized macrophage populations in favor of antitumor immunity were not seen with checkpoint blockade. Consistent with a pleiotropic mechanism of action, RMC-4550 in combination with either checkpoint or CSF1R blockade caused additive antitumor activity with complete tumor regressions in some mice; tumors intrinsically sensitive to SHP2 inhibition or checkpoint blockade were particularly susceptible. Our preclinical findings demonstrate that SHP2 thus plays a multifaceted role in inducing immune suppression in the tumor microenvironment, through both targeted inhibition of RAS pathway-dependent tumor growth and liberation of antitumor immune responses. Furthermore, these data suggest that inhibition of SHP2 is a promising investigational therapeutic approach. SIGNIFICANCE: Inhibition of SHP2 causes direct and selective depletion of protumorigenic M2 macrophages and promotes antitumor immunity, highlighting an investigational therapeutic approach for some RAS pathway-driven cancers.


Subject(s)
Breast Neoplasms/immunology , Immunosuppressive Agents/pharmacology , Macrophages/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Tumor Microenvironment/immunology , Allosteric Regulation , Animals , Apoptosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/prevention & control , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Nat Cell Biol ; 20(9): 1064-1073, 2018 09.
Article in English | MEDLINE | ID: mdl-30104724

ABSTRACT

Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAFV600E-driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by PTPN11) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS-GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRASG12C). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS-GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS-GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers.


Subject(s)
Biomarkers, Tumor/genetics , Guanosine Triphosphate/metabolism , Mutation , Neoplasms/enzymology , Neoplasms/genetics , Neurofibromin 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Genetic Predisposition to Disease , HEK293 Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , SOS1 Protein/metabolism , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , raf Kinases/metabolism
3.
EBioMedicine ; 16: 51-62, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28159572

ABSTRACT

Palmitate, the enzymatic product of FASN, and palmitate-derived lipids support cell metabolism, membrane architecture, protein localization, and intracellular signaling. Tubulins are among many proteins that are modified post-translationally by acylation with palmitate. We show that FASN inhibition with TVB-3166 or TVB-3664 significantly reduces tubulin palmitoylation and mRNA expression. Disrupted microtubule organization in tumor cells is an additional consequence of FASN inhibition. FASN inhibition combined with taxane treatment enhances inhibition of in vitro tumor cell growth compared to treatment with either agent alone. In lung, ovarian, prostate, and pancreatic tumor xenograft studies, FASN inhibition and paclitaxel or docetaxel combine to inhibit xenograft tumor growth with significantly enhanced anti-tumor activity. Tumor regression was observed in 3 of 6 tumor xenograft models. FASN inhibition does not affect cellular taxane concentration in vitro. Our data suggest a mechanism of enhanced anti-tumor activity of the FASN and taxane drug combination that includes inhibition of tubulin palmitoylation and disruption of microtubule organization in tumor cells, as well as a sensitization of tumor cells to FASN inhibition-mediated effects that include gene expression changes and inhibition of ß-catenin. Together, the results strongly support investigation of combined FASN inhibition and taxane treatment as a therapy for a variety of human cancers.


Subject(s)
Bridged-Ring Compounds/pharmacology , Enzyme Inhibitors/pharmacology , Fatty Acid Synthase, Type I/antagonists & inhibitors , Microtubules/drug effects , Taxoids/pharmacology , Tubulin/metabolism , Xenograft Model Antitumor Assays/methods , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Azetidines/chemistry , Azetidines/pharmacology , Blotting, Western , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Line , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lipoylation/drug effects , Mice , Mice, Inbred BALB C , Mice, Nude , Microscopy, Confocal , Microtubules/metabolism , Molecular Structure , Nitriles/chemistry , Nitriles/pharmacology , Phosphorylation/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , beta Catenin/genetics , beta Catenin/metabolism
4.
EBioMedicine ; 2(8): 808-24, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26425687

ABSTRACT

Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20-200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K-AKT-mTOR and ß-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. RESEARCH IN CONTEXT: Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers.


Subject(s)
Apoptosis , Cell Membrane/metabolism , Fatty Acid Synthase, Type I/biosynthesis , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/biosynthesis , Neoplasms/metabolism , Palmitic Acid/metabolism , Signal Transduction , Cell Line, Tumor , Cell Membrane/pathology , Enzyme Inhibitors/pharmacology , Fatty Acid Synthase, Type I/antagonists & inhibitors , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL