Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 12(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35741613

ABSTRACT

The Locus coeruleus (LC) modulates various neuronal circuits throughout the brain. Its unique architectural organization encompasses a net of axonal innervation that spans the entire brain, while its somatic core is highly compact. Recent research revealed an unexpected cellular input specificity within the nucleus that can give rise to various network states that either broadcast norepinephrine signals throughout the brain or pointedly modulate specific brain areas. Such adaptive input-output functions likely surpass our existing network models that build upon a given synaptic wiring configuration between neurons. As the distances between noradrenergic neurons in the core of the LC are unusually small, neighboring neurons could theoretically impact each other via volume transmission of NE. We therefore set out to investigate if such interaction could be mediated through noradrenergic alpha2-receptors in a spiking neuron model of the LC. We validated our model of LC neurons through comparison with experimental patch-clamp data and identified key variables that impact alpha2-mediated inhibition of neighboring LC neurons. Our simulation confirmed a reliable autoinhibition of LC neurons after episodes of high neuronal activity that continue even after neuronal activity subsided. Additionally, dendro-somatic synapses inhibited spontaneous spiking in the somatic compartment of connected neurons in our model. We determined the exact position of hundreds of LC neurons in the mouse brain stem via a tissue clearing approach and, based on this, further determined that 25 percent of noradrenergic neurons have a neighboring LC neuron within less than a 25-micrometer radius. By modeling NE diffusion, we estimated that more than 15 percent of the alpha2-adrenergic receptors fraction can bind NE within such a diffusion radius. Our spiking neuron model of LC neurons predicts that repeated or long-lasting episodes of high neuronal activity induce partitioning of the gross LC network and reduce the spike rate in neighboring neurons at distances smaller than 25 µm. As these volume-mediating neighboring effects are challenging to test with the current methodology, our findings can guide future experimental approaches to test this phenomenon and its physiological consequences.

2.
Front Hum Neurosci ; 14: 568051, 2020.
Article in English | MEDLINE | ID: mdl-33854421

ABSTRACT

Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...