Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Med Chem ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991141

ABSTRACT

Androgen receptor (AR) signaling plays a key role in the progression of prostate cancer. This study describes the discovery and optimization of a novel series of AR PROTAC degraders that recruit the Cereblon (CRBN) E3 ligase. Having identified a series of AR ligands based on 4-(4-phenyl-1-piperidyl)-2-(trifluoromethyl)benzonitrile, our PROTAC optimization strategy focused on linker connectivity and CRBN ligand SAR to deliver potent degradation of AR in LNCaP cells. This work culminated in compounds 11 and 16 which demonstrated good rodent oral bioavailability. Subsequent SAR around the AR binding region brought in an additional desirable feature, degradation of the important treatment resistance mutation L702H. Compound 22 (AZ'3137) possessed an attractive profile showing degradation of AR and L702H mutant AR with good oral bioavailability across species. The compound also inhibited AR signaling in vitro and tumor growth in vivo in a mouse prostate cancer xenograft model.

2.
RNA ; 30(1): 89-98, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37914399

ABSTRACT

The eukaryotic THO complex coordinates the assembly of so-called messenger RNA-ribonucleoprotein particles (mRNPs), a process that involves cotranscriptional coating of nascent mRNAs with proteins. Once formed, mRNPs undergo a quality control step that marks them either for active transport to the cytoplasm, or Rrp6/RNA exosome-mediated degradation in the nucleus. However, the mechanism behind the quality control of nascent mRNPs is still unclear. We investigated the cotranscriptional quality control of mRNPs in budding yeast by expressing the bacterial Rho helicase, which globally perturbs yeast mRNP formation. We examined the genome-wide binding profiles of the THO complex subunits Tho2, Thp2, Hpr1, and Mft1 upon perturbation of the mRNP biogenesis, and found that Tho2 plays two roles. In addition to its function as a subunit of the THO complex, upon perturbation of mRNP biogenesis Tho2 targets Rrp6 to chromatin via its carboxy-terminal domain. Interestingly, other THO subunits are not enriched on chromatin upon perturbation of mRNP biogenesis and are not necessary for localizing Rrp6 at its target loci. Our study highlights the potential role of Tho2 in cotranscriptional mRNP quality control, which is independent of other THO subunits. Considering that both the THO complex and the RNA exosome are evolutionarily highly conserved, our findings are likely relevant for mRNP surveillance in mammals.


Subject(s)
Chromatin , Saccharomyces cerevisiae Proteins , Chromatin/genetics , Chromatin/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
3.
Drug Discov Today ; 28(8): 103643, 2023 08.
Article in English | MEDLINE | ID: mdl-37244567

ABSTRACT

Targeted protein degraders (TPDs), which act through the ubiquitin proteasome system (UPS), are one of the newest small-molecule drug modalities. Since the initiation of the first clinical trial in 2019, investigating the use of ARV-110 in patients with cancer, the field has rapidly expanded. Recently, some theoretical absorption, distribution, metabolism, and excretion (ADME) and safety challenges have been posed for the modality. Using these theoretical concerns as a framework, the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ Consortium) Protein Degrader Working Group (WG) conducted two surveys to benchmark current preclinical practices for TPDs. Conceptually, the safety assessment of TPDs is the same as for standard small molecules; however, the techniques used, assay conditions/study endpoints, and timing of assessments might need to be modified to address differences in mode of action of the class.


Subject(s)
Proteasome Endopeptidase Complex , Proteolysis Targeting Chimera , Humans , Proteasome Endopeptidase Complex/metabolism
4.
ACS Pharmacol Transl Sci ; 5(10): 849-858, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36268122

ABSTRACT

Targeted protein degradation (TPD) is a promising therapeutic modality to modulate protein levels and its application promises to reduce the "undruggable" proteome. Among TPD strategies, Proteolysis TArgeting Chimera (PROTAC) technology has shown a tremendous potential with attractive advantages when compared to the inhibition of the same target. While PROTAC technology has had a significant impact in scientific research, its application to degrade integral membrane proteins (IMPs) is still in its beginnings. Among the 15 compounds having entered clinical trials by the end of 2021, only two targets are membrane-associated proteins. In this review we are discussing the potential reasons which may underlie this, and we are presenting new tools that have been recently developed to solve these limitations and to empower the use of PROTACs to target IMPs.

5.
ACS Chem Biol ; 17(7): 1733-1744, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35793809

ABSTRACT

PROteolysis TArgeting Chimeras (PROTACs) use the ubiquitin-proteasome system to degrade a protein of interest for therapeutic benefit. Advances made in targeted protein degradation technology have been remarkable, with several molecules having moved into clinical studies. However, robust routes to assess and better understand the safety risks of PROTACs need to be identified, which is an essential step toward delivering efficacious and safe compounds to patients. In this work, we used Cell Painting, an unbiased high-content imaging method, to identify phenotypic signatures of PROTACs. Chemical clustering and model prediction allowed the identification of a mitotoxicity signature that could not be expected by screening the individual PROTAC components. The data highlighted the benefit of unbiased phenotypic methods for identifying toxic signatures and the potential to impact drug design.


Subject(s)
High-Throughput Screening Assays , Proteolysis , Ubiquitin-Protein Ligases , Humans , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/metabolism
6.
J Clin Exp Hepatol ; 12(2): 293-305, 2022.
Article in English | MEDLINE | ID: mdl-35535064

ABSTRACT

Background: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, which is associated with features of metabolic syndrome. NAFLD may progress in a subset of patients into nonalcoholic steatohepatitis (NASH) with liver injury resulting ultimately in cirrhosis and potentially hepatocellular carcinoma. Today, there is no approved treatment for NASH due to, at least in part, the lack of preclinical models recapitulating features of human disease. Here, we report the development of a dietary model of NASH in the Göttingen minipig. Methods: First, we performed a longitudinal characterization of diet-induced NASH and fibrosis using biochemical, histological, and transcriptional analyses. We then evaluated the pharmacological response to Obeticholic acid (OCA) treatment for 8 weeks at 2.5mg/kg/d, a dose matching its active clinical exposure. Results: Serial histological examinations revealed a rapid installation of NASH driven by massive steatosis and inflammation, including evidence of ballooning. Furthermore, we found the progressive development of both perisinusoidal and portal fibrosis reaching fibrotic septa after 6 months of diet. Histological changes were mechanistically supported by well-defined gene signatures identified by RNA Seq analysis. While treatment with OCA was well tolerated throughout the study, it did not improve liver dysfunction nor NASH progression. By contrast, OCA treatment resulted in a significant reduction in diet-induced fibrosis in this model. Conclusions: These results, taken together, indicate that the diet-induced NASH in the Göttingen minipig recapitulates most of the features of human NASH and may be a model with improved translational value to prioritize drug candidates toward clinical development.

7.
QRB Discov ; 3: e4, 2022.
Article in English | MEDLINE | ID: mdl-37529292

ABSTRACT

Changing torsional restraints on DNA is essential for the regulation of transcription. Torsional stress, introduced by RNA polymerase, can propagate along chromatin facilitating topological transitions and modulating the specific binding of transcription factors (TFs) to DNA. Despite the importance, the mechanistic details on how torsional stress impacts the TFs-DNA complexation remain scarce. Herein, we address the impact of torsional stress on DNA complexation with homologous human basic helix-loop-helix (BHLH) hetero- and homodimers: MycMax, MadMax and MaxMax. The three TF dimers exhibit specificity towards the same DNA consensus sequence, the E-box response element, while regulating different transcriptional pathways. Using microseconds-long atomistic molecular dynamics simulations together with the torsional restraint that controls DNA total helical twist, we gradually over- and underwind naked and complexed DNA to a maximum of ± 5°/bp step. We observe that the binding of the BHLH dimers results in a similar increase in DNA torsional rigidity. However, under torsional stress the BHLH dimers induce distinct DNA deformations, characterised by changes in DNA grooves geometry and a significant asymmetric DNA bending. Supported by bioinformatics analyses, our data suggest that torsional stress may contribute to the execution of differential transcriptional programs of the homologous TFs by modulating their collaborative interactions.

8.
QRB Discov ; 3: e23, 2022.
Article in English | MEDLINE | ID: mdl-37529293

ABSTRACT

Selective DNA binding by transcription factors (TFs) is crucial for the correct regulation of DNA transcription. In healthy cells, promoters of active genes are hypomethylated. A single CpG methylation within a TF response element (RE) may change the binding preferences of the protein, thus causing the dysregulation of transcription programs. Here, we investigate a molecular mechanism driving the downregulation of the NDUFA13 gene, due to hypermethylation, which is associated with multiple cancers. Using bioinformatic analyses of breast cancer cell line MCF7, we identify a hypermethylated region containing the binding sites of two TFs dimers, CEBPB and E2F1-DP1, located 130 b.p. from the gene transcription start site. All-atom extended MD simulations of wild type and methylated DNA alone and in complex with either one or both TFs dimers provide mechanistic insights into the cooperative asymmetric binding order of the two dimers; the CEBPB binding should occur first to facilitate the E2F1-DP1-DNA association. The CpG methylation within the E2F1-DP1 RE and the linker decrease the cooperativity effects and renders the E2F1-DP1 binding site less recognizable by the TF dimer. Taken together, the identified CpG methylation site may contribute to the downregulation of the NDUFA13 gene.

9.
Nucleic Acids Res ; 49(16): 9280-9293, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34387667

ABSTRACT

Activator proteins 1 (AP-1) comprise one of the largest families of eukaryotic basic leucine zipper transcription factors. Despite advances in the characterization of AP-1 DNA-binding sites, our ability to predict new binding sites and explain how the proteins achieve different gene expression levels remains limited. Here we address the role of sequence-specific DNA flexibility for stability and specific binding of AP-1 factors, using microsecond-long molecular dynamics simulations. As a model system, we employ yeast AP-1 factor Yap1 binding to three different response elements from two genetic environments. Our data show that Yap1 actively exploits the sequence-specific flexibility of DNA within the response element to form stable protein-DNA complexes. The stability also depends on the four to six flanking nucleotides, adjacent to the response elements. The flanking sequences modulate the conformational adaptability of the response element, making it more shape-efficient to form specific contacts with the protein. Bioinformatics analysis of differential expression of the studied genes supports our conclusions: the stability of Yap1-DNA complexes, modulated by the flanking environment, influences the gene expression levels. Our results provide new insights into mechanisms of protein-DNA recognition and the biological regulation of gene expression levels in eukaryotes.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , DNA/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factor AP-1/genetics , Transcription Factors/genetics , Base Sequence/genetics , Binding Sites/genetics , DNA/ultrastructure , DNA-Binding Proteins/genetics , DNA-Binding Proteins/ultrastructure , Gene Expression Regulation/genetics , Macromolecular Substances/ultrastructure , Membrane Transport Proteins/genetics , Membrane Transport Proteins/ultrastructure , Molecular Dynamics Simulation , Response Elements/genetics , Saccharomyces cerevisiae Proteins/ultrastructure , Transcription Factor AP-1/ultrastructure , Transcription Factors/ultrastructure , YAP-Signaling Proteins
10.
SLAS Discov ; 26(4): 518-523, 2021 04.
Article in English | MEDLINE | ID: mdl-33615886

ABSTRACT

Mass spectrometry-based proteomics profiling is a discovery tool that enables researchers to understand the mechanisms of action of drug candidates. When applied to proteolysis targeting chimeras (PROTACs) such approaches provide unbiased perspectives of the binding, degradation selectivity, and mechanism related to efficacy and safety. Specifically, global profiling experiments can identify direct degradation events and assess downstream pathway modulation that may result from degradation or off-target inhibition. Targeted proteomics approaches can be used to quantify the levels of relevant E3 ligases and the protein of interest in cell lines and tissues of interest, which can inform the line of sight and provide insights on possible safety liabilities early in the project. Furthermore, proteomics approaches can be applied to understand protein turnover and resynthesis rates and inform on target tractability, as well as pharmacokinetics/pharmacodynamics understanding. In this perspective, we survey the literature around the impact of mass spectrometry-based proteomics in the development of PROTACs and present our envisioned proteomics cascade for supporting targeted protein degradation projects.


Subject(s)
High-Throughput Screening Assays , Molecular Targeted Therapy/methods , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Small Molecule Libraries/pharmacology , Ubiquitin-Protein Ligases/metabolism , Drug Discovery/methods , Eukaryotic Cells/cytology , Eukaryotic Cells/drug effects , Eukaryotic Cells/metabolism , Humans , Ligands , Mass Spectrometry/methods , Protein Binding , Proteolysis/drug effects , Proteomics/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/drug effects
11.
Microvasc Res ; 133: 104078, 2021 01.
Article in English | MEDLINE | ID: mdl-32980388

ABSTRACT

The present study assessed the impact of impaired tetrahydrobiopterin (BH4) production on vasoreactivity from conduit and small arteries along the vascular tree as seen during aging. For this purpose, the mutant hyperphenylalaninemic mouse (hph-1) was used. This model is reported to be deficient in GTP cyclohydrolase I, a rate limiting enzyme in BH4 biosynthesis. BH4 is a key regulator of vascular homeostasis by regulating the nitric oxide synthase 3 (NOS3) activity. In GTP-CH deficient mice, the aortic BH4 levels were decreased, by -77% in 12 week-middle-aged mice (young) and by -83% in 35-45 week-middle-aged mice (middle-aged). In young hph-1, the mesenteric artery ability to respond to flow was slightly reduced by 9%. Aging induced huge modification in many vascular functions. In middle-aged hph-1, we observed a decrease in aortic cGMP levels, biomarker of NO availability (-46%), in flow-mediated vasodilation of mesenteric artery (-31%), in coronary hyperemia response measured in isolated heart following transient ischemia (-27%) and in cutaneous microcirculation dilation in response to acetylcholine assessed in vivo by laser-doppler technic (-69%). In parallel, the endothelium-dependent relaxation in response to acetylcholine in conduit blood vessel, measured on isolated aorta rings, was unchanged in hph-1 mice whatever the age. Our findings demonstrate that in middle-aged GTP-CH depleted mice, the reduction of BH4 was characterized by an alteration of microcirculation dilatory properties observed in various parts of the vascular tree. Large conduit blood vessels vasoreactivity, ie aorta, was unaltered even in middle-aged mice emphasizing the main BH4-deletion impact on the microcirculation.


Subject(s)
GTP Cyclohydrolase/deficiency , Microcirculation , Microvessels/enzymology , Phenylketonurias/enzymology , Skin/blood supply , Vasodilation , Age Factors , Animals , Aorta, Thoracic/enzymology , Aorta, Thoracic/physiopathology , Biopterins/analogs & derivatives , Biopterins/metabolism , Coronary Vessels/enzymology , Coronary Vessels/physiopathology , Disease Models, Animal , GTP Cyclohydrolase/genetics , Male , Mesenteric Arteries/enzymology , Mesenteric Arteries/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Microvessels/physiopathology , Phenylketonurias/genetics , Phenylketonurias/physiopathology
12.
Methods Mol Biol ; 2209: 251-265, 2021.
Article in English | MEDLINE | ID: mdl-33201474

ABSTRACT

In eukaryotic cells, aberrant mRNPs with processing and packaging defects are targeted co-transcriptionally by a surveillance system that triggers their nuclear retention and ultimately the degradation of their mRNA component by the 3'-5' activity of the exosome-associated exonuclease Rrp6. This mRNP quality control process is stimulated by the NNS complex (Nrd1-Nab3-Sen1), which otherwise mediates termination, processing, and decay of ncRNAs. The process involves also the exosome co-activator TRAMP complex (Trf4-Air2-Mtr4). Here, we describe a genome-wide approach to visualize the dynamic movement and coordination of these quality control components over the yeast chromosomes upon perturbation of mRNP biogenesis. The method provides valuable information on how the surveillance system is precisely coordinated both physically and functionally with the transcription machinery to detect the faulty events during perturbation of mRNP biogenesis. The overview shows also that the gathering of the quality control components over affected mRNA genes takes place at the expense of their commitment to be recruited at ncRNA genomic features, provoking termination and processing defects of ncRNAs.


Subject(s)
RNA, Fungal/genetics , RNA, Messenger/genetics , RNA, Untranslated/genetics , RNA-Binding Proteins/chemistry , Ribonucleoproteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Gene Expression Regulation, Fungal , High-Throughput Nucleotide Sequencing/methods , Saccharomyces cerevisiae/genetics , Transcription, Genetic
13.
Br J Pharmacol ; 177(8): 1709-1718, 2020 04.
Article in English | MEDLINE | ID: mdl-32022252

ABSTRACT

Proteolysis-targeting chimeras are a new drug modality that exploits the endogenous ubiquitin proteasome system to degrade a protein of interest for therapeutic benefit. As the first-generation of proteolysis-targeting chimeras have now entered clinical trials for oncology indications, it is timely to consider the theoretical safety risks inherent with this modality which include off-target degradation, intracellular accumulation of natural substrates for the E3 ligases used in the ubiquitin proteasome system, proteasome saturation by ubiquitinated proteins, and liabilities associated with the "hook effect" of proteolysis-targeting chimeras This review describes in vitro and non-clinical in vivo data that provide mechanistic insight of these safety risks and approaches being used to mitigate these risks in the next generation of proteolysis-targeting chimera molecules to extend therapeutic applications beyond life-threatening diseases.


Subject(s)
Chimera , Pharmaceutical Preparations , Chimera/metabolism , Proteasome Endopeptidase Complex , Proteolysis , Ubiquitin-Protein Ligases/metabolism
14.
J Cell Biol ; 218(11): 3861-3879, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31488582

ABSTRACT

Protein and membrane trafficking pathways are critical for cell and tissue homeostasis. Traditional genetic and biochemical approaches have shed light on basic principles underlying these processes. However, the list of factors required for secretory pathway function remains incomplete, and mechanisms involved in their adaptation poorly understood. Here, we present a powerful strategy based on a pooled genome-wide CRISPRi screen that allowed the identification of new factors involved in protein transport. Two newly identified factors, TTC17 and CCDC157, localized along the secretory pathway and were found to interact with resident proteins of ER-Golgi membranes. In addition, we uncovered that upon TTC17 knockdown, the polarized organization of Golgi cisternae was altered, creating glycosylation defects, and that CCDC157 is an important factor for the fusion of transport carriers to Golgi membranes. In conclusion, our work identified and characterized new actors in the mechanisms of protein transport and secretion and opens stimulating perspectives for the use of our platform in physiological and pathological contexts.


Subject(s)
Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Cells, Cultured , Golgi Apparatus/metabolism , HEK293 Cells , HeLa Cells , Humans
15.
RNA Biol ; 16(7): 879-889, 2019 07.
Article in English | MEDLINE | ID: mdl-31007122

ABSTRACT

Eukaryotic cells have evolved a nuclear quality control (QC) system to monitor the co-transcriptional mRNA processing and packaging reactions that lead to the formation of export-competent ribonucleoprotein particles (mRNPs). Aberrant mRNPs that fail to pass the QC steps are retained in the nucleus and eliminated by the exonuclease activity of Rrp6. It is still unclear how the surveillance system is precisely coordinated both physically and functionally with the transcription machinery to detect the faulty events that may arise at each step of transcript elongation and mRNP formation. To dissect the QC mechanism, we previously implemented a powerful assay based on global perturbation of mRNP biogenesis in yeast by the bacterial Rho helicase. By monitoring model genes, we have shown that the QC process is coordinated by Nrd1, a component of the NNS complex (Nrd1-Nab3-Sen1) involved in termination, processing and decay of ncRNAs which is recruited by the CTD of RNAP II. Here, we have extended our investigations by analyzing the QC behaviour over the whole yeast genome. We performed high-throughput RNA sequencing (RNA-seq) to survey a large collection of mRNPs whose biogenesis is affected by Rho action and which can be rescued upon Rrp6 depletion. This genome-wide perspective was extended by generating high-resolution binding landscapes (ChIP-seq) of QC components along the yeast chromosomes before and after perturbation of mRNP biogenesis. Our results show that perturbation of mRNP biogenesis redistributes the QC components over the genome with a significant hijacking of Nrd1 and Nab3 from genomic loci producing ncRNAs to Rho-affected protein-coding genes, triggering termination and processing defects of ncRNAs.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/metabolism , Genome, Fungal , Ribonucleoproteins/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Chromatin/metabolism , DNA Helicases/metabolism , Down-Regulation/genetics , Gene Expression Regulation, Fungal , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/metabolism
16.
Wellcome Open Res ; 4: 119, 2019.
Article in English | MEDLINE | ID: mdl-32030357

ABSTRACT

Background: The fundamental process of protein secretion from eukaryotic cells has been well described for many years, yet gaps in our understanding of how this process is regulated remain. Methods: With the aim of identifying novel genes involved in the secretion of glycoproteins, we used a screening pipeline consisting of a pooled genome-wide CRISPR screen, followed by secondary siRNA screening of the hits to identify and validate several novel regulators of protein secretion. Results: We present approximately 50 novel genes not previously associated with protein secretion, many of which also had an effect on the structure of the Golgi apparatus. We further studied a small selection of hits to investigate their subcellular localisation. One of these, GPR161, is a novel Golgi-resident protein that we propose maintains Golgi structure via an interaction with golgin A5. Conclusions: This study has identified new factors for protein secretion involved in Golgi homeostasis.

17.
J Cell Sci ; 131(14)2018 07 19.
Article in English | MEDLINE | ID: mdl-29930080

ABSTRACT

Annexins are cytosolic phospholipid-binding proteins that can be found on the outer leaflet of the plasma membrane. The extracellular functions of annexin include modulating fibrinolysis activity and cell migration. Despite having well-described extracellular functions, the mechanism of annexin transport from the cytoplasmic inner leaflet to the extracellular outer leaflet of the plasma membrane remains unclear. Here, we show that the transbilayer movement of phospholipids facilitates the transport of annexins A2 and A5 across membranes in cells and in liposomes. We identified TMEM16F (also known as anoctamin-6, ANO6) as a lipid scramblase required for transport of these annexins to the outer leaflet of the plasma membrane. This work reveals a mechanism for annexin translocation across membranes which depends on plasma membrane phospholipid remodelling.


Subject(s)
Annexin A2/metabolism , Annexin A5/metabolism , Lipid Bilayers/metabolism , Phospholipids/metabolism , Annexin A2/genetics , Annexin A5/genetics , Anoctamins/genetics , Anoctamins/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , HeLa Cells , Humans , Liposomes/metabolism , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Protein Transport
18.
Semin Cell Dev Biol ; 83: 42-50, 2018 11.
Article in English | MEDLINE | ID: mdl-29501720

ABSTRACT

Eukaryotic cells have a highly evolved system of protein secretion, and dysfunction in this pathway is associated with many diseases including cancer, infection, metabolic disease and neurological disorders. Most proteins are secreted using the conventional endoplasmic reticulum (ER)/Golgi network and as such, this pathway is well-characterised. However, several cytosolic proteins have now been documented as secreted by unconventional transport pathways. This review focuses on two of these proteins families: annexins and galectins. The extracellular functions of these proteins are well documented, as are associations of their perturbed secretion with several diseases. However, the mechanisms and regulation of their secretion remain poorly characterised, and are discussed in this review. This review is part of a Special Issues of SCDB on 'unconventional protein secretion' edited by Walter Nickel and Catherine Rabouille.


Subject(s)
Annexins/metabolism , Galectins/metabolism , Protein Transport/physiology , Humans
19.
J Antibiot (Tokyo) ; 71(4): 447-455, 2018 03.
Article in English | MEDLINE | ID: mdl-29371644

ABSTRACT

The alarming issue of antibiotic resistance expansion requires a continuous search for new and efficient antibacterial agents. Here we describe the design of new tools to screen for target-specific inhibitors of the bacterial Rho factor directly inside eukaryotic cells. Rho factor is a global regulator of gene expression which is essential to most bacteria, especially Gram-negative. Since Rho has no functional or structural homolog in eukaryotes, it constitutes a valuable and well known bacterial target as evidenced by its inhibition by the natural antibiotic, Bicyclomycin. Our screening tools are based on perturbation of mRNA processing and packaging reactions in the nucleus of eukaryotic cells by the RNA-dependent helicase/translocase activity of bacterial Rho factor leading to a growth defect phenotype. In this approach, any compound that impedes Rho activity should restore growth to yeast or human cells expressing Rho protein, providing valuable means to screen for target-specific antibacterial agents within the environment of a eukaryotic cell. The yeast tool expressing E. coli Rho factor was validated using Bicyclomycin as the control antibacterial agent. The validation of the screening tool was further extended with a stable human cell line expressing Rho factor conditionally. Finally, we show that Rho factors from different bacterial pathogens can also be designed as yeast-based screening tools which can reveal subtle variations in the functional features of the proteins.


Subject(s)
Anti-Bacterial Agents/pharmacology , Rho Factor/drug effects , Yeasts/drug effects , Bacterial Infections/microbiology , Cell Line , Cell Survival/drug effects , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Escherichia coli/genetics , Gram-Negative Bacteria/drug effects , HEK293 Cells , Humans , Saccharomyces cerevisiae/drug effects , Transcription, Genetic
20.
J Cell Sci ; 130(19): 3234-3247, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28775154

ABSTRACT

Galectins are a family of lectin binding proteins expressed both intracellularly and extracellularly. Galectin-3 (Gal-3, also known as LGALS3) is expressed at the cell surface; however, Gal-3 lacks a signal sequence, and the mechanism of Gal-3 transport to the cell surface remains poorly understood. Here, using a genome-wide CRISPR/Cas9 forward genetic screen for regulators of Gal-3 cell surface localization, we identified genes encoding glycoproteins, enzymes involved in N-linked glycosylation, regulators of ER-Golgi trafficking and proteins involved in immunity. The results of this screening approach led us to address the controversial role of N-linked glycosylation in the transport of Gal-3 to the cell surface. We find that N-linked glycoprotein maturation is not required for Gal-3 transport from the cytosol to the extracellular space, but is important for cell surface binding. Additionally, secreted Gal-3 is predominantly free and not packaged into extracellular vesicles. These data support a secretion pathway independent of N-linked glycoproteins and extracellular vesicles.


Subject(s)
Endoplasmic Reticulum/metabolism , Galectin 3/metabolism , Golgi Apparatus/metabolism , Blood Proteins , CRISPR-Cas Systems , Endoplasmic Reticulum/genetics , Galectin 3/genetics , Galectins , Genome-Wide Association Study , Glycosylation , Golgi Apparatus/genetics , HeLa Cells , Humans , Protein Transport/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...