Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Int J Microbiol ; 2021: 8868151, 2021.
Article in English | MEDLINE | ID: mdl-33574851

ABSTRACT

Shiga toxin-producing, enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a major foodborne pathogen causing symptoms ranging from simple intestinal discomfort to bloody diarrhea and life-threatening hemolytic uremic syndrome in humans. Cattle can be asymptomatically colonized by O157:H7 predominantly at the rectoanal junction (RAJ). Colonization of the RAJ is highly associated with the shedding of O157:H7 in bovine feces. Supershedding (SS) is a phenomenon that has been reported in some cattle that shed more than 104 colony-forming units of O57:H7 per gram of feces, 100-1000 times more or greater than normal shedders. The unique bovine RAJ cell adherence model revealed that O157:H7 employs a LEE-independent mechanism of attachment to one of the RAJ cell types, the squamous epithelial (RSE) cells. Nine nonfimbrial adhesins were selected to determine their role in the characteristic hyperadherent phenotype of SS O157 on bovine RSE cells, in comparison with human HEp-2 cells. A number of single nucleotide polymorphisms (SNPs) were found amongst these nonfimbrial adhesins across a number of SS isolates. In human cells, deletion of yfaL reduced the adherence of both EDL933 and SS17. However, deletion of eae resulted in a significant loss of adherence in SS17 whereas deletion of wzzB and iha in EDL933 resulted in the same loss of adherence to HEp-2 cells. On RSE cells, none of these nonfimbrial deletion mutants were able to alter the adherence phenotype of SS17. In EDL933, deletion of cah resulted in mitigated adherence. Surprisingly, four nonfimbrial adhesin gene deletions were actually able to confer the hyperadherent phenotype on RSE cells. Overall, this study reveals that the contribution of nonfimbrial adhesins to the adherence mechanisms and functions of O157:H7 is both strain and host cell type dependent as well as indicates a possible role of these nonfimbrial adhesins in the SS phenotype exhibited on RSE cells.

2.
mSphere ; 3(3)2018 08 29.
Article in English | MEDLINE | ID: mdl-29950382

ABSTRACT

Neisseria gonorrhoeae is a bacterial pathogen responsible for the sexually transmitted infection gonorrhea. Emergence of antimicrobial resistance (AMR) of N. gonorrhoeae worldwide has resulted in limited therapeutic choices for this infection. Men who seek treatment often have symptomatic urethritis; in contrast, gonococcal cervicitis in women is usually minimally symptomatic, but may progress to pelvic inflammatory disease. Previously, we reported the first analysis of gonococcal transcriptome expression determined in secretions from women with cervical infection. Here, we defined gonococcal global transcriptional responses in urethral specimens from men with symptomatic urethritis and compared these with transcriptional responses in specimens obtained from women with cervical infections and in vitro-grown N. gonorrhoeae isolates. This is the first comprehensive comparison of gonococcal gene expression in infected men and women. RNA sequencing analysis revealed that 9.4% of gonococcal genes showed increased expression exclusively in men and included genes involved in host immune cell interactions, while 4.3% showed increased expression exclusively in women and included phage-associated genes. Infected men and women displayed comparable antibiotic-resistant genotypes and in vitro phenotypes, but a 4-fold higher expression of the Mtr efflux pump-related genes was observed in men. These results suggest that expression of AMR genes is programed genotypically and also driven by sex-specific environments. Collectively, our results indicate that distinct N. gonorrhoeae gene expression signatures are detected during genital infection in men and women. We propose that therapeutic strategies could target sex-specific differences in expression of antibiotic resistance genes.IMPORTANCE Recent emergence of antimicrobial resistance of Neisseria gonorrhoeae worldwide has resulted in limited therapeutic choices for treatment of infections caused by this organism. We performed global transcriptomic analysis of N. gonorrhoeae in subjects with gonorrhea who attended a Nanjing, China, sexually transmitted infection (STI) clinic, where antimicrobial resistance of N. gonorrhoeae is high and increasing. We found that N. gonorrhoeae transcriptional responses to infection differed in genital specimens taken from men and women, particularly antibiotic resistance gene expression, which was increased in men. These sex-specific findings may provide a new approach to guide therapeutic interventions and preventive measures that are also sex specific while providing additional insight to address antimicrobial resistance of N. gonorrhoeae.


Subject(s)
Drug Resistance, Bacterial , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Gonorrhea/microbiology , Neisseria gonorrhoeae/genetics , China , Female , Humans , Male , Sequence Analysis , Sequence Analysis, RNA , Sex Factors
3.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29054868

ABSTRACT

Cah is a calcium-binding autotransporter protein involved in autoaggregation and biofilm formation. Although cah is widespread in Shiga toxin-producing Escherichia coli (STEC), we detected mutations in cah at a frequency of 31.3% in this pathogen. In STEC O157:H7 supershedder strain SS17, a large deletion results in a smaller coding sequence, encoding a protein lacking the C-terminal 71 amino acids compared with Cah in STEC O157:H7 strain EDL933. We examined the function of Cah in biofilm formation and host colonization to better understand the selective pressures for cah mutations. EDL933-Cah played a conditional role in biofilm formation in vitro: it enhanced E. coli DH5α biofilm formation on glass surfaces under agitated culture conditions that prevented autoaggregation but inhibited biofilm formation under hydrostatic conditions that facilitated autoaggregation. This function appeared to be strain dependent since Cah-mediated biofilm formation was diminished when an EDL933 cah gene was expressed in SS17. Deletion of cah in EDL933 enhanced bacterial attachment to spinach leaves and altered the adherence pattern of EDL933 to bovine recto-anal junction squamous epithelial (RSE) cells. In contrast, in trans expression of EDL933 cah in SS17 increased its attachment to leaf surfaces, and in DH5α, it enhanced its adherence to RSE cells. Hence, the ecological function of Cah appears to be modulated by environmental conditions and other bacterial strain-specific properties. Considering the prevalence of cah in STEC and its role in attachment and biofilm formation, cah mutations might be selected in ecological niches in which inactivation of Cah would result in an increased fitness in STEC during colonization of plants or animal hosts.IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) harbors genes encoding diverse adhesins, and many of these are known to play an important role in bacterial attachment and host colonization. We demonstrated here that the autotransporter protein Cah confers on E. coli DH5α cells a strong autoaggregative phenotype that is inversely correlated with its ability to form biofilms and plays a strain-specific role in plant and animal colonization by STEC. Although cah is widespread in the STEC population, we detected a mutation rate of 31.3% in cah, which is similar to that reported for rpoS and fimH The formation of cell aggregates due to increased bacterium-to-bacterium interactions may be disadvantageous to bacterial populations under conditions that favor a planktonic state in STEC. Therefore, a loss-of-function mutation in cah is likely a selective trait in STEC when autoaggregative properties become detrimental to bacterial cells and may contribute to the adaptability of STEC to fluctuating environments.


Subject(s)
Escherichia coli Proteins/genetics , Mutation , Shiga-Toxigenic Escherichia coli/physiology , Anal Canal/microbiology , Animals , Cattle , Epithelial Cells/microbiology , Escherichia coli Proteins/metabolism , Plant Leaves/microbiology , Rectum/microbiology , Shiga-Toxigenic Escherichia coli/genetics , Spinacia oleracea/microbiology
4.
Pathog Dis ; 75(5)2017 07 31.
Article in English | MEDLINE | ID: mdl-28520925

ABSTRACT

Neisseria gonorrhoeae is one of the most prevalent sexually transmitted infections worldwide. This obligate human pathogen has been extensively studied in vitro, where bacterial factors that are known to contribute to gonococcal disease and their regulation are relatively well defined. However, these in vitro experimental conditions only loosely replicate the host specific environment encountered by the bacteria in vivo. We recently reported on the complete gonococcal transcriptome expressed during natural human mucosal infection using RNA-seq analysis. Gene transcripts expressed in vivo (in vivo expressed factors) included genes encoding antibiotic resistance determinants, and a large number of hypothetical genes. A comparison of the gonococcal transcriptome expressed in vivo with the corresponding strain grown in vitro identified sets of genes regulated by infection, including those regulated by iron and the transcriptional regulatory protein Fur. We highlight here the role of Fur and gonococcal-specific regulatory processes important for infection and pathogenicity. We have determined that the genes controlled by Fur follow the same expression pattern in vivo as described previously in vitro, confirming Fur's regulatory role during infection. Collectively, these studies provide new insights into how bacterial fitness and pathogenicity are modulated during human mucosal infection.


Subject(s)
Adaptation, Physiological , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Gonorrhea/microbiology , Iron/metabolism , Neisseria gonorrhoeae/physiology , Host-Pathogen Interactions , Humans , Neisseria gonorrhoeae/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
5.
PLoS One ; 11(3): e0150258, 2016.
Article in English | MEDLINE | ID: mdl-26939126

ABSTRACT

Salmonella Enteritidis (SE) is one of the most common causes of bacterial food-borne illnesses in the world. Despite the SE's ability to colonize and infect a wide-range of host, the most common source of infection continues to be the consumption of contaminated shell eggs and egg-based products. To date, the role of the source of SE infection has not been studied as it relates to SE pathogenesis and resulting disease. Using a streptomycin-treated mouse model of human colitis, this study examined the virulence of SE grown in egg yolk and Luria Bertani (LB) broth, and mouse feces collected from mice experimentally infected with SEE1 (SEE1 passed through mice). Primary observations revealed that the mice infected with SE grown in egg yolk displayed greater illness and disease markers than those infected with SE passed through mice or grown in LB broth. Furthermore, the SE grown in egg yolk achieved higher rates of colonization in the mouse intestines and extra-intestinal organs of infected mice than the SE from LB broth or mouse feces. Our results here indicate that the source of SE infection may contribute to the overall pathogenesis of SE in a second host. These results also suggest that reservoir-pathogen dynamics may be critical for SE's ability to establish colonization and priming for virulence potential.


Subject(s)
Colitis/microbiology , Egg Yolk/microbiology , Food Microbiology , Salmonella Infections, Animal/microbiology , Salmonella enteritidis/pathogenicity , Animals , Chickens , Disease Models, Animal , Egg Yolk/metabolism , Enzyme-Linked Immunosorbent Assay , Feces , Humans , Intestines/microbiology , Mice , Mice, Inbred C57BL , Salmonella Infections/microbiology , Salmonella Infections/transmission , Salmonella Infections, Animal/transmission , Streptomycin/chemistry , Virulence
6.
Genome Announc ; 3(5)2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26358589

ABSTRACT

This report presents the complete genome sequences of two Salmonella enterica serovar Enteritidis strains bearing the pulsed-field gel electrophoresis profile JEGX01.0004, which were isolated from the internal contents of eggs.

7.
PLoS One ; 10(2): e0116743, 2015.
Article in English | MEDLINE | ID: mdl-25664460

ABSTRACT

Shiga toxin-producing Escherichia coli O157:H7 (O157) are significant foodborne pathogens and pose a serious threat to public health worldwide. The major reservoirs of O157 are asymptomatic cattle which harbor the organism in the terminal recto-anal junction (RAJ). Some colonized animals, referred to as "super-shedders" (SS), are known to shed O157 in exceptionally large numbers (>104 CFU/g of feces). Recent studies suggest that SS cattle play a major role in the prevalence and transmission of O157, but little is known about the molecular mechanisms associated with super-shedding. Whole genome sequence analysis of an SS O157 strain (SS17) revealed a genome of 5,523,849 bp chromosome with 5,430 open reading frames and two plasmids, pO157 and pSS17, of 94,645 bp and 37,446 bp, respectively. Comparative analyses showed that SS17 is clustered with spinach-associated O157 outbreak strains, and belongs to the lineage I/II, clade 8, D group, and genotype 1, a subgroup of O157 with predicted hyper-virulence. A large number of non-synonymous SNPs and other polymorphisms were identified in SS17 as compared with other O157 strains (EC4115, EDL933, Sakai, TW14359), including in key adherence- and virulence-related loci. Phenotypic analyses revealed a distinctive and strongly adherent aggregative phenotype of SS17 on bovine RAJ stratified squamous epithelial (RSE) cells that was conserved amongst other SS isolates. Molecular genetic and functional analyses of defined mutants of SS17 suggested that the strongly adherent aggregative phenotype amongst SS isolates is LEE-independent, and likely results from a novel mechanism. Taken together, our study provides a rational framework for investigating the molecular mechanisms associated with SS, and strong evidence that SS O157 isolates have distinctive features and use a LEE-independent mechanism for hyper-adherence to bovine rectal epithelial cells.


Subject(s)
Bacterial Adhesion/genetics , Bacterial Shedding/genetics , Cattle/microbiology , Epithelial Cells/microbiology , Escherichia coli O157/pathogenicity , Genome, Bacterial , Intestine, Large/microbiology , Animals , Base Sequence , Escherichia coli O157/classification , Escherichia coli O157/genetics , Genotype , Molecular Sequence Data , Phenotype , Plasmids , Polymorphism, Genetic , Rectum/microbiology , Virulence/genetics
8.
Metallomics ; 3(4): 363-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21283867

ABSTRACT

The interaction of heme with the heme chaperone CcmE is central to our understanding of cytochrome c maturation, a complex post-translational process involving at least eight proteins in many Gram-negative bacteria and plant mitochondria. We have shown previously that Escherichia coli CcmE can interact with heme non-covalently in vitro, before forming a novel covalent histidine-heme bond, in a redox-sensitive manner. The function of CcmE is to bind heme in the periplasm before transferring it to apocytochromes c. In the absence of structural information on the complex of CcmE and heme, we have further characterized it by examining the binding of the soluble domain of CcmE (CcmE') to protoporphyrins containing metals other than Fe, namely Zn-, Sn-, Co- and Mn-protoporphyrin (PPIX). CcmE' demonstrated no affinity for the Zn- or Sn-containing protoporphyrins and low affinity for Mn(ii)-PPIX. High-affinity, reversible binding was, however, observed for Co(iii)-PPIX, which was highly sensitive to oxidation state as demonstrated by release of the ligand from the chaperone on reduction; no binding to Co(ii)-PPIX was observed. The non-covalent complex of CcmE' and Co(iii)-PPIX was characterized by non-denaturing mass spectrometry. The implications of these observations for the in vivo function of CcmE are discussed.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Hemeproteins/metabolism , Metals/metabolism , Protoporphyrins/metabolism , Cobalt/metabolism , Manganese/metabolism , Models, Molecular , Oxidation-Reduction , Protein Binding , Tin/metabolism , Zinc/metabolism
9.
J Biol Chem ; 286(9): 7705-13, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21212266

ABSTRACT

ATF5 loss of function has been shown previously to cause apoptotic cell death in glioblastoma and breast cancer cells but not in non-transformed astrocytes and human breast epithelial cells. The mechanism for the cell type-dependent survival function of ATF5 is unknown. We report here that the anti-apoptotic factor BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in C6 glioma cells and MCF-7 breast cancer cells. ATF5 binds to an ATF5-specific regulatory element that is downstream of and adjacent to the negative regulatory element in the BCL-2 P2 promoter, stimulating BCL-2 expression. Highlighting the critical role of BCL-2 in ATF5-dependent cancer cell survival, expression of BCL-2 blocks death of C6 and MCF-7 cells induced by dominant-negative ATF5, and depletion of BCL-2 impairs ATF5-promoted cell survival. Moreover, we found that BCL-2 expression is not regulated by ATF5 in non-transformed rat astrocytes, mouse embryonic fibroblasts, and human breast epithelial cells, where expression of BCL-2 but not ATF5 is required for cell survival. These findings identify BCL-2 as an essential mediator for the cancer-specific cell survival function of ATF5 in glioblastoma and breast cancer cells and provide direct evidence that the cell type-specific function of ATF5 derives from differential regulation of downstream targets by ATF5 in different types of cells.


Subject(s)
Activating Transcription Factors/metabolism , Apoptosis/physiology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Transcription, Genetic/physiology , Animals , Apoptosis/drug effects , Breast Neoplasms , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Culture Media, Serum-Free/pharmacology , Down-Regulation/physiology , Enzyme Inhibitors/pharmacology , Female , Glioma , Humans , Promoter Regions, Genetic/physiology , Rats , Staurosporine/pharmacology
10.
Mol Cell ; 28(2): 304-14, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17964268

ABSTRACT

The subunits of the presumptive replicative helicase of archaea and eukaryotes, the MCM complex, are members of the AAA+ (ATPase-associated with various cellular activities) family of ATPases. Proteins within this family harness the chemical energy of ATP hydrolysis to perform a broad range of cellular processes. Here, we investigate the function of the AAA+ site in the mini-chromosome maintenance (MCM) complex of the archaeon Sulfolobus solfataricus (SsoMCM). We find that SsoMCM has an unusual active-site architecture, with a unique blend of features previously found only in distinct families of AAA+ proteins. We additionally describe a series of mutant doping experiments to investigate the mechanistic basis of intersubunit coordination in the generation of helicase activity. Our results indicate that MCM can tolerate catalytically inactive subunits and still function as a helicase, leading us to propose a semisequential model for helicase activity of this complex.


Subject(s)
Adenosine Triphosphate/metabolism , Archaeal Proteins/chemistry , DNA Helicases/chemistry , Metalloendopeptidases/metabolism , Sulfolobus solfataricus/enzymology , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Binding Sites , Computer Simulation , DNA Helicases/genetics , DNA Helicases/metabolism , Hydrolysis , Metalloendopeptidases/chemistry , Metalloendopeptidases/genetics , Models, Chemical , Models, Molecular , Monte Carlo Method , Multiprotein Complexes/chemistry , Mutagenesis, Site-Directed , Protein Conformation , Protein Subunits , Sulfolobus solfataricus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...