Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 269: 116352, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38537512

ABSTRACT

Pyrazole analogues of the staurosporine aglycone K252c, in which the lactam ring was replaced by a pyrazole moiety, were synthesized. In this series, one or the other nitrogen atoms of the indolocarbazole scaffold was substituted by aminoalkyl chains, aiming at improving protein kinase inhibition as well as cellular potency toward acute myeloid leukemia (AML) cell lines. Compound 19a, substituted at the N12-position by a 3-(methylamino)propyl group, showed high cellular activity in the low micromolar range toward three AML cell lines (MOLM-13, OCI-AML3 and MV4-11) with selectivity over non-cancerous cells (NRK, H9c2). 19a is also a highly potent inhibitor of the three Pim kinase isoforms, Pim-3 being the most inhibited with an IC50 value in the nanomolar range. A selectivity screening toward a panel of 50 protein kinases showed that 19a also potently inhibited PRK2 and to a lower extent AMPK, MARK3, GSK3ß and JAK3. Our results enhance the understanding of the structural characteristics of indolopyrazolocarbazoles essential for potent protein kinase inhibition with therapeutic potential against AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Protein Kinase Inhibitors/chemistry , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Pyrazoles/chemistry , Cell Line, Tumor , Apoptosis , Cell Proliferation , fms-Like Tyrosine Kinase 3 , Antineoplastic Agents/chemistry
2.
Cancers (Basel) ; 16(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398225

ABSTRACT

Serine-threonine protein kinases of the DYRK and CLK families regulate a variety of vital cellular functions. In particular, these enzymes phosphorylate proteins involved in pre-mRNA splicing. Targeting splicing with pharmacological DYRK/CLK inhibitors emerged as a promising anticancer strategy. Investigation of the pyrido[3,4-g]quinazoline scaffold led to the discovery of DYRK/CLK binders with differential potency against individual enzyme isoforms. Exploring the structure-activity relationship within this chemotype, we demonstrated that two structurally close compounds, pyrido[3,4-g]quinazoline-2,10-diamine 1 and 10-nitro pyrido[3,4-g]quinazoline-2-amine 2, differentially inhibited DYRK1-4 and CLK1-3 protein kinases in vitro. Unlike compound 1, compound 2 efficiently inhibited DYRK3 and CLK4 isoenzymes at nanomolar concentrations. Quantum chemical calculations, docking and molecular dynamic simulations of complexes of 1 and 2 with DYRK3 and CLK4 identified a dramatic difference in electron donor-acceptor properties critical for preferential interaction of 2 with these targets. Subsequent transcriptome and proteome analyses of patient-derived glioblastoma (GBM) neurospheres treated with 2 revealed that this compound impaired CLK4 interactions with spliceosomal proteins, thereby altering RNA splicing. Importantly, 2 affected the genes that perform critical functions for cancer cells including DNA damage response, p53 signaling and transcription. Altogether, these results provide a mechanistic basis for the therapeutic efficacy of 2 previously demonstrated in in vivo GBM models.

3.
Bioorg Med Chem ; 100: 117619, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38320389

ABSTRACT

A structure-activity relationship study performed on 1H-pyrrolo[3,2-g]isoquinoline scaffold identified new haspin inhibitors with nanomolar potencies and selectivity indices (SI) over 6 (inhibitory potency evaluated against 8 protein kinases). Compound 22 was the most active of the series (haspin IC50 = 76 nM). Cellular evaluation of 22 confirmed its activity for endogenous haspin in U-2 OS cells and its anti-proliferative activity against various cell lines. In addition, the binding mode of analog 22 in complex with haspin was determined by X-ray crystallography.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Pyrroles , Protein Kinase Inhibitors/chemistry , Pyrroles/chemistry , Structure-Activity Relationship , Protein Serine-Threonine Kinases/antagonists & inhibitors , Isoquinolines/chemistry , Isoquinolines/pharmacology
4.
Nat Cell Biol ; 24(10): 1541-1557, 2022 10.
Article in English | MEDLINE | ID: mdl-36192632

ABSTRACT

Glioblastoma (GBM) is characterized by exceptionally high intratumoral heterogeneity. However, the molecular mechanisms underlying the origin of different GBM cell populations remain unclear. Here, we found that the compositions of ribosomes of GBM cells in the tumour core and edge differ due to alternative RNA splicing. The acidic pH in the core switches before messenger RNA splicing of the ribosomal gene RPL22L1 towards the RPL22L1b isoform. This allows cells to survive acidosis, increases stemness and correlates with worse patient outcome. Mechanistically, RPL22L1b promotes RNA splicing by interacting with lncMALAT1 in the nucleus and inducing its degradation. Contrarily, in the tumour edge region, RPL22L1a interacts with ribosomes in the cytoplasm and upregulates the translation of multiple messenger RNAs including TP53. We found that the RPL22L1 isoform switch is regulated by SRSF4 and identified a compound that inhibits this process and decreases tumour growth. These findings demonstrate how distinct GBM cell populations arise during tumour growth. Targeting this mechanism may decrease GBM heterogeneity and facilitate therapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/metabolism , Alternative Splicing , Gene Expression Regulation, Neoplastic , Ribosomes/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA Splicing/genetics , Phenotype , Brain Neoplasms/metabolism , Cell Line, Tumor
5.
Molecules ; 27(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080340

ABSTRACT

A new series of pyrazolo[3,4-g]isoquinoline derivatives, diversely substituted at the 4- or 8-position, were synthesized. The results of the kinase inhibitory potency study demonstrated that the introduction of a bromine atom at the 8-position was detrimental to Haspin inhibition, while the introduction of an alkyl group at the 4-position led to a modification of the kinase inhibition profiles. Altogether, the results obtained demonstrated that new pyrazolo[3,4-g]isoquinolines represent a novel family of kinase inhibitors with various selectivity profiles.


Subject(s)
Isoquinolines , Isoquinolines/pharmacology , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 73: 128914, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35917834

ABSTRACT

We synthesized new analogues of the anti-AML agent VS-II-173. We studied the effect of the substitution at the 1- and 5-positions of the pyrazolo[4,3-a]phenanthridine scaffold on Pim-1 kinase inhibition and cytotoxicity against AML MOLM-13 cells. We found that compounds 20 and 21, substituted at the 1-position exhibited stronger Pim-1 inhibition together with a high potency toward MOLM-13 cells, associated with apoptosis induction and selectivity over non-cancerous NRK cells.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Phenanthridines/pharmacology , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-pim-1
7.
Eur J Med Chem ; 236: 114369, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35447555

ABSTRACT

Haspin (haploid germ cell-specific nuclear protein kinase) offers a potential target for the development of new anticancer drugs. Thus, the identification of new inhibitors targeting this protein kinase is of high interest. However, Haspin inhibitors developed to date show a poor selectivity profile over other protein kinases of the human kinome. Here, we identified a new pyridoquinazoline based inhibitor (4), with excellent inhibitory activity and selectivity for Haspin (IC50 of 50 nM). We describe the structure-activity relationship study including the evaluation of this inhibitor on a large panel of 486 kinases as well as on immortalized or cancer cell lines. In addition, we determined the binding mode of analog 2a in complex with Haspin using X-ray crystallography.


Subject(s)
Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
8.
Eur J Med Chem ; 225: 113748, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34392191

ABSTRACT

Mechanical allodynia, a painful sensation caused by innocuous touch, is a major chronic pain symptom, which often remains without an effective treatment. There is thus a need for new anti-allodynic treatments based on new drug classes. We recently synthetized new 3,5-disubstituted pyridin-2(1H)-one derivatives. By substituting the pyridinone at the 3-position by various aryl/heteroaryl moieties and at the 5-position by a phenylamino group, we discovered that some derivatives exhibited a strong anti-allodynic potency in rats. Here, we report that varying the substitution of the pyridinone 5-position, the 3-position being substituted by an indol-4-yl moiety, further improves such anti-allodynic potency. Compared with 2, one of the two most active compounds of the first series, eleven out of nineteen newly synthetized compounds showed higher anti-allodynic potency, with two of them completely preventing mechanical allodynia. In the first series, hit compounds 1 and 2 appeared to be inhibitors of p38α MAPK, a protein kinase known to underlie pain hypersensitivity in animal models. Depending on the substitution at the 5-position, some newly synthetized compounds were also stronger p38α MAPK inhibitors. Surprisingly, though, anti-allodynic effects and p38α MAPK inhibitory potencies were not correlated, suggesting that other biological target(s) is/are involved in the analgesic activity in this series. Altogether, these results confirm that 3,5-disubstituted pyridine-2(1H)-one derivatives are of high interest for the development of new treatment of mechanical allodynia.


Subject(s)
Analgesics/pharmacology , Hyperalgesia/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyridones/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Freund's Adjuvant , Hyperalgesia/metabolism , Molecular Structure , Pain Measurement , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridones/chemical synthesis , Pyridones/chemistry , Rats , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Molecules ; 26(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064521

ABSTRACT

The purpose of this review is to underline the protein kinases that have been established, either in fundamental approach or clinical trials, as potential biological targets in pain management. Protein kinases are presented according to their group in the human kinome: TK (Trk, RET, EGFR, JAK, VEGFR, SFK, BCR-Abl), CMGC (p38 MAPK, MEK, ERK, JNK, ASK1, CDK, CLK2, DYRK1A, GSK3, CK2), AGC (PKA, PKB, PKC, PKMζ, PKG, ROCK), CAMK, CK1 and atypical/other protein kinases (IKK, mTOR). Examples of small molecule inhibitors of these biological targets, demonstrating an analgesic effect, are described. Altogether, this review demonstrates the fundamental role that protein kinase inhibitors could play in the development of new pain treatments.


Subject(s)
Pain Management , Protein Kinase Inhibitors/therapeutic use , Protein Kinases/metabolism , Animals , Humans , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
10.
Bioorg Chem ; 94: 103347, 2020 01.
Article in English | MEDLINE | ID: mdl-31810757

ABSTRACT

Original 1-amino substituted thioxanthone derivatives were easily prepared from the bare heterocycle by a deprotometalation-iodolysis-copper-catalyzed CN bond formation sequence. This last reaction delivered mono- or/and diarylated products depending on the aniline involved. 1-Amino-9-thioxanthone was also prepared and reacted with 2-iodoheterocycles. Interestingly, while 1-(arylamino)-9-thioxanthones could be isolated, their subsequent cyclization was found to deliver original hexacyclic derivatives of helicoidal nature. Evaluation of their photophysical properties revealed high fluorescence in polar media, indicating potential applications for biological imaging. These compounds being able to inhibit PIM1 kinase, their putative binding mode was examined through molecular modeling experiments. Altogether, these results tend to suggest the discovery of a new family of fluorescent PIM inhibitors and pave the way for their future rational optimization.


Subject(s)
Amines/chemistry , Quinolines/chemistry , Xanthones/chemistry , Molecular Structure , Thioxanthenes/chemistry , Thioxanthenes/pharmacology , Xanthones/pharmacology
11.
Eur J Med Chem ; 187: 111917, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31806536

ABSTRACT

Mechanical Allodynia (MA), a frequent chronic pain symptom caused by innocuous stimuli, constitutes an unmet medical need, as treatments using analgesics available today are not always effective and can be associated with important side-effects. A series of 3,5-disubstituted pyridin-2(1H)-ones was designed, synthesized and evaluated in vivo toward a rat model of inflammatory MA. We found that the series rapidly and strongly prevented the development of MA. 3-(2-Bromophenyl)-5-(phenylamino)pyridin-2(1H)-one 69, the most active compound of the series, was also able to quickly reverse neuropathic MA in rats. Next, when 69 was evaluated toward a panel of 50 protein kinases (PK) in order to identify its potential biological target(s), we found that 69 is a p38α MAPK inhibitor, a PK known to contribute to pain hypersensitivity in animal models. 3,5-Disubstituted pyridin-2(1H)-ones thus could represent a novel class of analgesic for the treatment of MA.


Subject(s)
Analgesics/therapeutic use , Hyperalgesia/drug therapy , Pyridones/therapeutic use , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Dose-Response Relationship, Drug , Molecular Structure , Pain Measurement , Pyridones/chemical synthesis , Pyridones/chemistry , Rats , Structure-Activity Relationship
12.
Bioorg Med Chem ; 27(10): 2083-2089, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30967303

ABSTRACT

New pyrido[3,4-g]quinazoline derivatives were prepared and evaluated for their inhibitory potency toward 5 protein kinases (CLK1, DYRK1A, GSK3, CDK5, CK1). A related pyrido[4,3-h]quinazoline scaffold with an angular structure was also synthesized and its potency against the same protein kinase panel was compared to the analogous pyrido[3,4-g]quinazoline. Best results were obtained for 10-nitropyrido[3,4-g]quinazoline 4 toward CLK1 with nanomolar activities.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/metabolism , Pyridines/chemistry , Quinazolines/chemistry , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , Humans , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinases/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Quinazolines/metabolism , Structure-Activity Relationship
13.
Eur J Med Chem ; 166: 304-317, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30731399

ABSTRACT

Cdc2-like kinase 1 (CLK1) and dual specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) are involved in the regulation of alternative pre-mRNA splicing. Dysregulation of this process has been linked to cancer progression and neurodegenerative diseases, making CLK1 and DYRK1A important therapeutic targets. Here we describe the synthesis of new pyrido[3,4-g]quinazoline derivatives and the evaluation of the inhibitory potencies of these compounds toward CDK5, CK1, GSK3, CLK1 and DYRK1A. Introduction of aminoalkylamino groups at the 2-position resulted in several compounds with low nanomolar affinity and selective inhibition of CLK1 and/or DYRK1A. Their evaluation on several immortalized or cancerous cell lines showed varying degree of cell viability reduction. Co-crystal structures of CLK1 with two of the most potent compounds revealed two alternative binding modes of the pyrido[3,4-g]quinazoline scaffold that can be exploited for future inhibitor design.


Subject(s)
Drug Design , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Cell Line, Tumor , Chemistry Techniques, Synthetic , Humans , Molecular Docking Simulation , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/chemistry , Quinazolines/chemistry , Quinazolines/metabolism , Structure-Activity Relationship , Dyrk Kinases
14.
Mol Cancer Ther ; 18(3): 567-578, 2019 03.
Article in English | MEDLINE | ID: mdl-30679386

ABSTRACT

More than 40 years ago, the present standard induction therapy for acute myeloid leukemia (AML) was developed. This consists of the metabolic inhibitor cytarabine (AraC) and the cytostatic topoisomerase 2 inhibitor daunorubucin (DNR). In light of the high chance for relapse, as well as the large heterogeneity, novel therapies are needed to improve patient outcome. We have tested the anti-AML activity of 15 novel compounds based on the scaffolds pyrrolo[2,3-a]carbazole-3-carbaldehyde, pyrazolo[3,4-c]carbazole, pyrazolo[4,3-a]phenanthridine, or pyrrolo[2,3-g]indazole. The compounds were inhibitors of Pim kinases, but could also have inhibitory activity against other protein kinases. Ser/Thr kinases like the Pim kinases have been identified as potential drug targets for AML therapy. The compound VS-II-173 induced AML cell death with EC50 below 5 µmol/L, and was 10 times less potent against nonmalignant cells. It perturbed Pim-kinase-mediated AML cell signaling, such as attenuation of Stat5 or MDM2 phosphorylation, and synergized with DNR to induce AML cell death. VS-II-173 induced cell death also in patients with AML blasts, including blast carrying high-risk FLT3-ITD mutations. Mutation of nucleophosmin-1 was associated with good response to VS-II-173. In conclusion new scaffolds for potential AML drugs have been explored. The selective activity toward patient AML blasts and AML cell lines of the pyrazolo-analogue VS-II-173 make it a promising drug candidate to be further tested in preclinical animal models for AML.


Subject(s)
Carbazoles/chemistry , Indazoles/chemistry , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/pharmacology , Apoptosis/drug effects , Carbazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cytarabine/chemistry , Cytarabine/pharmacology , Humans , Indazoles/pharmacology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation/drug effects , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/genetics , Signal Transduction/drug effects , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology
16.
Bioorg Med Chem Lett ; 26(17): 4327-9, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27469128

ABSTRACT

The synthesis of new diversely substituted pyrido[3,4-g]quinazolines is described. The inhibitory potencies of prepared compounds toward a panel of five CMGC protein kinases (CDK5, CLK1, DYRK1A, CK1, GSK3), that are known to play a potential role in Alzheimer's disease, were evaluated. The best overall kinase inhibition profile was found for nitro compound 4 bearing an ethyl group at the 5-position.


Subject(s)
Protein-Tyrosine Kinases/antagonists & inhibitors , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Binding Sites , Enzyme Activation/drug effects , Nitro Compounds/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/classification , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Quinazolines/chemistry
17.
Bioorg Med Chem ; 24(14): 3116-24, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27255178

ABSTRACT

A derivative of the staurosporine aglycon (K252c), in which the lactam ring was replaced by a pyrazole moiety, was synthesized. The resulting indolopyrazolocarbazole (3) inhibited Pim isoforms 1-3 whereas it did not impair the activity of two known targets of K252c, protein kinase C isoforms α and γ. Compound 3 exhibited moderate cytotoxic activity toward human leukemia and colon carcinoma cell lines (K562 and HCT116), strongly suggesting that this new scaffold deserves further investigations for treatment of malignancies associated with Pim activity.


Subject(s)
Pyrazoles/chemistry , Staurosporine/chemical synthesis , Staurosporine/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , K562 Cells , Models, Molecular , Protein Kinase C/drug effects , Protein Kinase C-alpha/drug effects , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Staurosporine/chemistry , Structure-Activity Relationship
18.
Article in English | MEDLINE | ID: mdl-27194556

ABSTRACT

This review, of the literature published between 2010 and 2015 reports that molecules containing a non-fused and/or fused pyrazole moiety could exhibit very potent activity toward Pim kinases, including the inhibition of cellular Bad phosphorylation as well as antiproliferative activity against various cancer cells. Even if Pim kinase inhibitors currently in clinical trial do not exhibit a pyrazole moiety, heteroaromatic kinase inhibitors containing an indazole part such as Axitinib and Pazopanib already reached the market. Therefore, one can imagine that in the future, heteroaromatic derivatives inhibiting Pim kinases including pyrazoles could be identified and used for their diagnostic and/or therapeutic potential alone or in combination with other drugs for the diseases in which Pim kinases are involved.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrazoles/pharmacology , Animals , Drug Discovery , Humans , Models, Molecular , Molecular Targeted Therapy , Protein Conformation , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrazoles/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship
19.
Eur J Med Chem ; 118: 170-7, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27128181

ABSTRACT

The design and synthesis of new pyrido[3,4-g]quinazoline derivatives is described as well as their protein kinase inhibitory potencies toward five CMGC family members (CDK5, CK1, GSK3, CLK1 and DYRK1A). The interest for this original tricyclic heteroaromatic scaffold as modulators of CLK1/DYRK1A activity was validated by nanomolar potencies (compounds 12 and 13). CLK1 co-crystal structures with two inhibitors revealed the binding mode of these compounds within the ATP-binding pocket.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Amino Acid Sequence , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemistry , Quinazolines/chemistry , Structure-Activity Relationship
20.
Bioorg Med Chem ; 23(22): 7313-23, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26526744
SELECTION OF CITATIONS
SEARCH DETAIL
...