Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
PLoS One ; 16(12): e0260236, 2021.
Article in English | MEDLINE | ID: mdl-34898624

ABSTRACT

Reading is a complex cognitive process that involves primary oculomotor function and high-level activities like attention focus and language processing. When we read, our eyes move by primary physiological functions while responding to language-processing demands. In fact, the eyes perform discontinuous twofold movements, namely, successive long jumps (saccades) interposed by small steps (fixations) in which the gaze "scans" confined locations. It is only through the fixations that information is effectively captured for brain processing. Since individuals can express similar as well as entirely different opinions about a given text, it is therefore expected that the form, content and style of a text could induce different eye-movement patterns among people. A question that naturally arises is whether these individuals' behaviours are correlated, so that eye-tracking while reading can be used as a proxy for text subjective properties. Here we perform a set of eye-tracking experiments with a group of individuals reading different types of texts, including children stories, random word generated texts and excerpts from literature work. In parallel, an extensive Internet survey was conducted for categorizing these texts in terms of their complexity and coherence, considering a large number of individuals selected according to different ages, gender and levels of education. The computational analysis of the fixation maps obtained from the gaze trajectories of the subjects for a given text reveals that the average "magnetization" of the fixation configurations correlates strongly with their complexity observed in the survey. Moreover, we perform a thermodynamic analysis using the Maximum-Entropy Model and find that coherent texts were closer to their corresponding "critical points" than non-coherent ones, as computed from the Pairwise Maximum-Entropy method, suggesting that different texts may induce distinct cohesive reading activities.


Subject(s)
Eye-Tracking Technology , Adolescent , Adult , Eye Movements/physiology , Female , Humans , Male , Models, Theoretical , Reading , Young Adult
2.
PLoS One ; 13(8): e0201654, 2018.
Article in English | MEDLINE | ID: mdl-30133469

ABSTRACT

The increasing cost of electoral campaigns raises the need for effective campaign planning and a precise understanding of the return of such investment. Interestingly, despite the strong impact of elections on our daily lives, how this investment is translated into votes is still unknown. By performing data analysis and modeling, we show that top candidates spend more money per vote than the less successful and poorer candidates, a relation that discloses a diseconomy of scale. We demonstrate that such electoral diseconomy arises from the competition between candidates due to inefficient campaign expenditure. Our approach succeeds in two important tests. First, it reveals that the statistical pattern in the vote distribution of candidates can be explained in terms of the independently conceived, but similarly skewed distribution of money campaign. Second, using a heuristic argument, we are able to explain the observed turnout percentage for a given election of approximately 63% in average. This result is in good agreement with the average turnout rate obtained from real data. Due to its generality, we expect that our approach can be applied to a wide range of problems concerning the adoption process in marketing campaigns.


Subject(s)
Politics , Brazil , Humans , Models, Economic
3.
Phys Rev Lett ; 120(17): 175701, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29756808

ABSTRACT

The elastic backbone is the set of all shortest paths. We found a new phase transition at p_{eb} above the classical percolation threshold at which the elastic backbone becomes dense. At this transition in 2D, its fractal dimension is 1.750±0.003, and one obtains a novel set of critical exponents ß_{eb}=0.50±0.02, γ_{eb}=1.97±0.05, and ν_{eb}=2.00±0.02, fulfilling consistent critical scaling laws. Interestingly, however, the hyperscaling relation is violated. Using Binder's cumulant, we determine, with high precision, the critical probabilities p_{eb} for the triangular and tilted square lattice for site and bond percolation. This transition describes a sudden rigidification as a function of density when stretching a damaged tissue.

4.
PLoS One ; 12(5): e0176791, 2017.
Article in English | MEDLINE | ID: mdl-28489872

ABSTRACT

By analyzing a unique dataset of more than 270,000 scientists, we discovered substantial gender differences in scientific collaborations. While men are more likely to collaborate with other men, women are more egalitarian. This is consistently observed over all fields and regardless of the number of collaborators a scientist has. The only exception is observed in the field of engineering, where this gender bias disappears with increasing number of collaborators. We also found that the distribution of the number of collaborators follows a truncated power law with a cut-off that is gender dependent and related to the gender differences in the number of published papers. Considering interdisciplinary research, our analysis shows that men and women behave similarly across fields, except in the case of natural sciences, where women with many collaborators are more likely to have collaborators from other fields.


Subject(s)
Cooperative Behavior , Research , Science , Sex Factors , Female , Humans , Male , Publications
5.
Phys Rev E ; 93(6): 060103, 2016 06.
Article in English | MEDLINE | ID: mdl-27415187

ABSTRACT

We propose a general coarse-graining method to derive a continuity equation that describes any dissipative system of repulsive particles interacting through short-ranged potentials. In our approach, the effect of particle-particle correlations is incorporated to the overall balance of energy, and a nonlinear diffusion equation is obtained to represent the overdamped dynamics. In particular, when the repulsive interaction potential is a short-ranged power law, our approach reveals a distinctive correspondence between particle-particle energy and the generalized thermostatistics of Tsallis for any nonpositive value of the entropic index q. Our methodology can also be applied to microscopic models of superconducting vortices and complex plasma, where particle-particle correlations are pronounced at low concentrations. The resulting continuum descriptions provide elucidating and useful insights on the microdynamical behavior of these physical systems. The consistency of our approach is demonstrated by comparison with molecular dynamics simulations.

6.
Phys Rev E ; 93: 042124, 2016 04.
Article in English | MEDLINE | ID: mdl-27176271

ABSTRACT

We disclose the origin of anisotropic percolation perimeters in terms of the stochastic Loewner evolution (SLE) process. Precisely, our results from extensive numerical simulations indicate that the perimeters of multilayered and directed percolation clusters at criticality are the scaling limits of the Loewner evolution of an anomalous Brownian motion, being superdiffusive and subdiffusive, respectively. The connection between anomalous diffusion and fractal anisotropy is further tested by using long-range power-law correlated time series (fractional Brownian motion) as the driving functions in the evolution process. The fact that the resulting traces are distinctively anisotropic corroborates our hypothesis. Under the conceptual framework of SLE, our study therefore reveals different perspectives for mathematical and physical interpretations of non-Markovian processes in terms of anisotropic paths at criticality and vice versa.

7.
Phys Rev Lett ; 117(27): 275702, 2016 Dec 30.
Article in English | MEDLINE | ID: mdl-28084764

ABSTRACT

We report on a novel dynamic phase in electrical networks, in which current channels perpetually change in time. This occurs when the elementary units of the network are fuse-antifuse devices, namely, become insulators within a certain finite interval of local applied voltages. As a consequence, the macroscopic current exhibits temporal fluctuations which increase with system size. We determine the conditions under which this exotic situation appears by establishing a phase diagram as a function of the applied field and the size of the insulating window. Besides its obvious application as a versatile electronic device, due to its rich variety of behaviors, this network model provides a possible description for particle-laden flow through porous media leading to dynamical clogging and reopening of the local channels in the pore space.

8.
Sci Rep ; 5: 9082, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25765450

ABSTRACT

The increasing demands in security and reliability of infrastructures call for the optimal design of their embedded complex networks topologies. The following question then arises: what is the optimal layout to fulfill best all the demands? Here we present a general solution for this problem with scale-free networks, like the Internet and airline networks. Precisely, we disclose a way to systematically construct networks which are robust against random failures. Furthermore, as the size of the network increases, its shortest path becomes asymptotically invariant and the density of links goes to zero, making it ultra-small world and highly sparse, respectively. The first property is ideal for communication and navigation purposes, while the second is interesting economically. Finally, we show that some simple changes on the original network formulation can lead to an improved topology against malicious attacks.

9.
Sci Rep ; 4: 6239, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25174706

ABSTRACT

By treating the suicide as a social fact, Durkheim envisaged that suicide rates should be determined by the connections between people and society. Under the same framework, he considered that crime is bound up with the fundamental conditions of all social life. The social effect on the occurrence of homicides has been previously substantiated, and confirmed here, in terms of a superlinear scaling relation: by doubling the population of a Brazilian city results in an average increment of 135% in the number of homicides, rather than the expected isometric increase of 100%, as found, for example, for the mortality due to car crashes. Here we present statistical signs of the social influence on the suicide occurrence in cities. Differently from homicides (superlinear) and fatal events in car crashes (isometric), we find sublinear scaling behavior between the number of suicides and city population, with allometric power-law exponents, ß = 0.84 ± 0.02 and 0.87 ± 0.01, for all cities in Brazil and US counties, respectively. Also for suicides in US, but using the Metropolitan Statistical Areas (MSAs), we obtain ß = 0.88 ± 0.01.


Subject(s)
Suicide/statistics & numerical data , Brazil , Cities/statistics & numerical data , Homicide/statistics & numerical data , Humans
10.
PLoS One ; 9(3): e90537, 2014.
Article in English | MEDLINE | ID: mdl-24603470

ABSTRACT

Understanding the dynamics of research production and collaboration may reveal better strategies for scientific careers, academic institutions, and funding agencies. Here we propose the use of a large and multidisciplinary database of scientific curricula in Brazil, namely, the Lattes Platform, to study patterns of scientific production and collaboration. Detailed information about publications and researchers is available in this database. Individual curricula are submitted by the researchers themselves so that coauthorship is unambiguous. Researchers can be evaluated by scientific productivity, geographical location and field of expertise. Our results show that the collaboration network is growing exponentially for the last three decades, with a distribution of number of collaborators per researcher that approaches a power-law as the network gets older. Moreover, both the distributions of number of collaborators and production per researcher obey power-law behaviors, regardless of the geographical location or field, suggesting that the same universal mechanism might be responsible for network growth and productivity. We also show that the collaboration network under investigation displays a typical assortative mixing behavior, where teeming researchers (i.e., with high degree) tend to collaborate with others alike.


Subject(s)
Cooperative Behavior , Databases, Factual , Job Application , Research Personnel/statistics & numerical data , Authorship , Publications/statistics & numerical data
11.
PLoS One ; 8(11): e78401, 2013.
Article in English | MEDLINE | ID: mdl-24223800

ABSTRACT

Genetic algorithms (GAs) have been used to find efficient solutions to numerous fundamental and applied problems. While GAs are a robust and flexible approach to solve complex problems, there are some situations under which they perform poorly. Here, we introduce a genetic algorithm approach that is able to solve complex tasks plagued by so-called ''golf-course''-like fitness landscapes. Our approach, which we denote variable environment genetic algorithms (VEGAs), is able to find highly efficient solutions by inducing environmental changes that require more complex solutions and thus creating an evolutionary drive. Using the density classification task, a paradigmatic computer science problem, as a case study, we show that more complex rules that preserve information about the solution to simpler tasks can adapt to more challenging environments. Interestingly, we find that conservative strategies, which have a bias toward the current state, evolve naturally as a highly efficient solution to the density classification task under noisy conditions.


Subject(s)
Algorithms , Genome , Models, Genetic , Biological Evolution , Computer Simulation , Monte Carlo Method
12.
Sci Rep ; 2: 920, 2012.
Article in English | MEDLINE | ID: mdl-23226829

ABSTRACT

The movement of the eyes has been the subject of intensive research as a way to elucidate inner mechanisms of cognitive processes. A cognitive task that is rather frequent in our daily life is the visual search for hidden objects. Here we investigate through eye-tracking experiments the statistical properties associated with the search of target images embedded in a landscape of distractors. Specifically, our results show that the twofold process of eye movement, composed of sequences of fixations (small steps) intercalated by saccades (longer jumps), displays characteristic statistical signatures. While the saccadic jumps follow a log-normal distribution of distances, which is typical of multiplicative processes, the lengths of the smaller steps in the fixation trajectories are consistent with a power-law distribution. Moreover, the present analysis reveals a clear transition between a directional serial search to an isotropic random movement as the difficulty level of the searching task is increased.


Subject(s)
Cognition , Vision, Ocular , Eye Movements , Fixation, Ocular , Humans
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 2): 056109, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23214845

ABSTRACT

We investigate the majority-vote model with two states (-1,+1) and a noise parameter q on Apollonian networks. The main result found here is the presence of the phase transition as a function of the noise parameter q. Previous results on the Ising model in Apollonian networks have reported no presence of a phase transition. We also studied the effect of redirecting a fraction p of the links of the network. By means of Monte Carlo simulations, we obtained the exponent ratio γ/ν, ß/ν, and 1/ν for several values of rewiring probability p. The critical noise q{c} and U were also calculated. Therefore, the results presented here demonstrate that the majority-vote model belongs to a different universality class than equilibrium Ising model on Apollonian network.


Subject(s)
Models, Statistical , Monte Carlo Method , Rheology/methods , Computer Simulation
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 1): 041112, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22680425

ABSTRACT

Despite original claims of a first-order transition in the product rule model proposed by Achlioptas et al. [Science 323, 1453 (2009)], recent studies indicate that this percolation model, in fact, displays a continuous transition. The distinctive scaling properties of the model at criticality, however, strongly suggest that it should belong to a different universality class than ordinary percolation. Here we introduce a generalization of the product rule that reveals the effect of nonlocality on the critical behavior of the percolation process. Precisely, pairs of unoccupied bonds are chosen according to a probability that decays as a power law of their Manhattan distance, and only that bond connecting clusters whose product of their sizes is the smallest becomes occupied. Interestingly, our results for two-dimensional lattices at criticality shows that the power-law exponent of the product rule has a significant influence on the finite-size scaling exponents for the spanning cluster, the conducting backbone, and the cutting bonds of the system. In all three cases, we observe a clear transition from ordinary to (nonlocal) explosive percolation exponents.


Subject(s)
Algorithms , Colloids/chemistry , Models, Chemical , Models, Molecular , Computer Simulation
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 1): 031133, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21517480

ABSTRACT

We propose a simple generalization of the explosive percolation process [Achlioptas et al., Science 323, 1453 (2009)], and investigate its structural and transport properties. In this model, at each step, a set of q unoccupied bonds is randomly chosen. Each of these bonds is then associated with a weight given by the product of the cluster sizes that they would potentially connect, and only that bond among the q set which has the smallest weight becomes occupied. Our results indicate that, at criticality, all finite-size scaling exponents for the spanning cluster, the conducting backbone, the cutting bonds, and the global conductance of the system, change continuously and significantly with q. Surprisingly, we also observe that systems with intermediate values of q display the worst conductive performance. This is explained by the strong inhibition of loops in the spanning cluster, resulting in a substantially smaller associated conducting backbone.

16.
Phys Rev Lett ; 102(1): 018701, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19257248

ABSTRACT

We investigate topologically biased failure in scale-free networks with a degree distribution P(k) proportional, variantk;{-gamma}. The probability p that an edge remains intact is assumed to depend on the degree k of adjacent nodes i and j through p_{ij} proportional, variant(k_{i}k_{j});{-alpha}. By varying the exponent alpha, we interpolate between random (alpha=0) and systematic failure. For alpha>0 (<0) the most (least) connected nodes are depreciated first. This topological bias introduces a characteristic scale in P(k) of the depreciated network, marking a crossover between two distinct power laws. The critical percolation threshold, at which global connectivity is lost, depends both on gamma and on alpha. As a consequence, network robustness or fragility can be controlled through fine-tuning of the topological bias in the failure process.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(6 Pt 2): 066112, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19256910

ABSTRACT

We study the percolation problem on the Apollonian network model. The Apollonian networks display many interesting properties commonly observed in real network systems, such as small-world behavior, scale-free distribution, and a hierarchical structure. By taking advantage of the deterministic hierarchical construction of these networks, we use the real-space renormalization-group technique to write exact iterative equations that relate percolation network properties at different scales. More precisely, our results indicate that the percolation probability and average mass of the percolating cluster approach the thermodynamic limit logarithmically. We suggest that such ultraslow convergence might be a property of hierarchical networks. Since real complex systems are certainly finite and very commonly hierarchical, we believe that taking into account finite-size effects in real-network systems is of fundamental importance.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 2): 065101, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16906890

ABSTRACT

In this work we propose an idealized model for competitive cluster growth in complex networks. Each cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that the cluster size distribution depends on the particular choice for the topology of the network of contacts among the agents. As an application, we show that the cluster size distributions obtained when the growth process is performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may be due to the fact that social networks involved in the electoral process may also possess an underlining hierarchical structure.

SELECTION OF CITATIONS
SEARCH DETAIL