Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mini Rev Med Chem ; 2023 May 23.
Article in English | MEDLINE | ID: mdl-37231748

ABSTRACT

BACKGROUND: Cardiovascular Disease is the leading cause of death in adult and pediatric patients with Chronic Kidney Disease (CKD) and its pathogenesis involves the interaction of multiple pathways. As Inflammatory mechanisms play a critical role in the vascular disease of CKD pediatric patients, there are several biomarkers related to inflammation strongly associated with this comorbidity. OBJECTIVE: This review provides available evidence on the link between several biomarkers and the pathophysiology of heart disease in patients with CKD. METHODS: The data were obtained independently by the authors, who carried out a comprehensive and non-systematic search in PubMed, Cochrane, Scopus, and SciELO databases. The search terms were "Chronic Kidney Disease", "Cardiovascular Disease", "Pediatrics", "Pathophysiology", "Mineral and Bone Disorder (MBD)", "Renin Angiotensin System (RAS)", "Biomarkers", "BNP", "NTproBNP", "CK-MB", "CXCL6", "CXCL16", "Endocan-1 (ESM-1)", "FABP3", "FABP4", h-FABP", "Oncostatin-M (OSM)", "Placental Growth Factor (PlGF)" and "Troponin I". RESULTS: The pathogenesis of CKD-mediated cardiovascular disease is linked to inflammatory biomarkers, which play a critical role in the initiation, maintenance, and progression of cardiovascular disease. There are several biomarkers associated with cardiovascular disease in pediatric patients, including BNP, NTproBNP, CK-MB, CXCL6, CXCL16, Endocan-1 (ESM-1), FABP3, FABP4, Oncostatin-M (OSM), Placental Growth Factor (PlGF), and Troponin I. CONCLUSION: The pathogenesis of CKD-mediated cardiovascular disease is not completely understood, but it is linked to inflammatory biomarkers. Further studies are required to elucidate the pathophysiological and potential role of these novel biomarkers.

2.
Mol Biol Rep ; 48(9): 6619-6629, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34417705

ABSTRACT

BACKGROUND: In rheumatoid arthritis (RA) and osteoarthritis (OA), chronic inflammatory processes lead to progresive joint destruction. The renin-angiotensin system (RAS) is involved in the pathogenesis of RA and OA. The aim of this mini-review article is to summarize evidence on the role of RAS in RA and OA. METHODS: A non-systematic search in Pubmed included terms as "rheumatoid arthritis", "renin angiotensin system", "osteopenia", "RANKL", "DKK-1", "MMP", "inflammation", "angiogenesis", "local renin-angiotensin system", "angiotensin converting enzyme", "AT2 receptor", "Ang-(1-7)", "VEGF", "angiotensine receptor blocker", "angiotensin converting enzyme inhibitors", "renin inhibitors". RESULTS: Both RAS axes, the classical one, formed by angiotensin converting enzyme (ACE), angiotensin (Ang) II and AT1 receptor (AT1R) and the counter-regulatory one, composed by ACE2, Ang-(1-7) and the Mas receptor, modulate inflammation and tissue damage. Ang II activates pro-inflammatory mediators and oxidative stress. Conversely, Ang-(1-7) exerts anti-inflammatory actions, decreasing cytokine release, leukocyte attraction, density of vessels, tissue damage and fibrosis. Angiogenesis facilitates inflammatory cells invasion, while osteopenia causes joint dysfunction. Up-regulated osteoclastogenisis and down-regulated osteoblastogeneses were associaed with the activation of the classical RAS axis. Three different pathways, RANKL, DKK-1 and MMPs are enhanced by classical RAS activation. The treatment of RA included methotrexate and corticosteroids, which can cause side effects. Studies with angiotensin receptor blockers (ARBs), angiotensin converting enzyme inhibitors (ACEi) and renin inhibitors have been conducted in experimental and clinical RA with promising results. CONCLUSION: The classical RAS activation is an important mechanism in RA pathogenesis and the benefit of ARB and ACEi administration should be further investigated.


Subject(s)
Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/physiopathology , Osteoarthritis/metabolism , Osteoarthritis/physiopathology , Renin-Angiotensin System , Adrenal Cortex Hormones/therapeutic use , Angiotensin I/metabolism , Angiotensin II/metabolism , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Humans , Osteoarthritis/drug therapy , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/metabolism , Proto-Oncogene Mas/metabolism , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System/drug effects , Signal Transduction/drug effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...