Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Mol Biotechnol ; 66(2): 288-299, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37097521

ABSTRACT

Lectins are proteins that reversibly bind to carbohydrates and are commonly found across many species. The Banana Lectin (BanLec) is a member of the Jacalin-related Lectins, heavily studied for its immunomodulatory, antiproliferative, and antiviral activity. In this study, a novel sequence was generated in silico considering the native BanLec amino acid sequence and 9 other lectins belonging to JRL. Based on multiple alignment of these proteins, 11 amino acids of the BanLec sequence were modified because of their potential for interference in active binding site properties resulting in a new lectin named recombinant BanLec-type Lectin (rBTL). rBTL was expressed in E. coli and was able to keep biological activity in hemagglutination assay (rat erythrocytes), maintaining similar structure with the native lectin. Antiproliferative activity was demonstrated on human melanoma lineage (A375), evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT). rBTL was able to inhibit cellular growth in a concentration-dependent manner, in an 8-h incubation, 12 µg/mL of rBTL led to a 28.94% of cell survival compared to cell control with 100%. Through a nonlinear fit out log-concentration versus biological response, an IC50% of 3.649 µg/mL of rBTL was determined. In conclusion, it is possible to state that the changes made to the rBTL sequence maintained the structure of the carbohydrate-binding site without changing specificity. The new lectin is biologically active, with an improved carbohydrate recognition spectrum compared to nBanLec, and can also be considered cytotoxic for A375 cells.


Subject(s)
Escherichia coli , Lectins , Humans , Animals , Rats , Lectins/genetics , Lectins/pharmacology , Escherichia coli/genetics , Plant Lectins/genetics , Plant Lectins/pharmacology , Plant Lectins/chemistry , Amino Acid Sequence , Carbohydrates
2.
Methods Mol Biol ; 2411: 105-115, 2022.
Article in English | MEDLINE | ID: mdl-34816401

ABSTRACT

This chapter describes a practical, industry-friendly, and efficient vaccine protocol based on the use of Escherichia coli cell fractions (inclusion bodies or cell lysate supernatant) containing the recombinant antigen. This approach was characterized and evaluated in laboratory and farm animals by the seroneutralization assay in mice, thereby showing to be an excellent alternative to induce a protective immune response against clostridial diseases.


Subject(s)
Escherichia coli Infections , Escherichia coli Vaccines , Animals , Bacterial Vaccines , Escherichia coli/genetics , Escherichia coli/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Inclusion Bodies , Mice , Vaccines, Synthetic
3.
Methods Mol Biol ; 2411: 117-125, 2022.
Article in English | MEDLINE | ID: mdl-34816402

ABSTRACT

Farm animals are frequently affected by a group of diseases with a rapid clinical course, caused by Clostridium spp. and immunization is essential to provide protection. However, the current manufacturing platform for these vaccines has disadvantages and the main alternative is the use of an expression system that uses Escherichia coli to obtain recombinant vaccine antigens. In this chapter we describe procedures for cloning, expression and characterization of recombinant toxins from Clostridium spp. produced in E. coli for veterinary vaccine applications.


Subject(s)
Clostridium , Animals , Antibodies, Bacterial , Bacterial Toxins/genetics , Bacterial Vaccines , Escherichia coli/genetics , Escherichia coli Infections , Vaccines, Synthetic
4.
Food Res Int ; 140: 109871, 2021 02.
Article in English | MEDLINE | ID: mdl-33648189

ABSTRACT

Sushi is a ready-to-eat (RTE) food prepared from raw or cooked fish that is widely consumed worldwide. Listeria monocytogenes is the foodborne pathogen most commonly associated with RTE and fish products. The aim of the present study was to evaluate the presence of L. monocytogenes in salmon sushi commercialized in Pelotas city, Brazil, and to evaluate the genetic diversity, biofilm-forming ability in stainless steel, and virulence characteristics of the isolates. Four sampling events were carried out in seven specialized sushi establishments totaling 28 sushi pools. Listeria monocytogenes was detected in six samples (21.4%) from two establishments (28.6%). All isolates belonged to serotype 4b and carried the prfA, plcA, plcB, hlyA, mpl, actA, inlA, inlC, inlJ, and iap genes. The inlB gene was not detected in two isolates. The PFGE analysis grouped the isolates into four pulsotypes. All isolates had the ability to form biofilm on stainless steel and the average of biofilm formation counts varied between 6.4 and 7.2 log CFU.cm-2. The isolates harbored the biofilm-related genes agrA, agrB, agrC, agrD, and prfA, with the exception of two isolates that did not harbor the agrD gene. The presence of L. monocytogenes in RTE sushi is a concern, demonstrating that sushi consumption may be a risk of human listeriosis. Furthermore, it was possible to identify the persistence of this pathogen for at least one month (pulsotypes III and IV), in two establishments (A and G), highlighting the need for improving the cleaning and sanitation procedures in establishments that commercialize RTE sushi.


Subject(s)
Listeria monocytogenes , Animals , Biofilms , Brazil , Food Microbiology , Genetic Variation , Humans , Listeria monocytogenes/genetics , Salmon , Virulence/genetics
5.
Biologicals, v. 72, p. 54-57, jul. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3893

ABSTRACT

Tuberculosis (TB) is one of the top 10 causes of death in humans worldwide. The most important causative agents of TB are bacteria from the Mycobacterium tuberculosis complex (MTC), although nontuberculous mycobacteria (NTM) can also cause similar infections. The ability to identify and differentiate MTC isolates from NTM is important for the selection of the correct antimicrobial therapy. Immunochromatographic assays with antibodies anti-MPT64 allow differentiation between MTC and NTM since the MPT64 protein is specific from MTC. However, studies reported false-negative results mainly due to mpt64 63-bp deletion. Considering this drawback, we selected seven human antibody fragments against MPT64 by phage display and produced them as scFv-Fc. Three antibodies reacted with rMPT64 mutant (63-bp deletion) protein and native MPT64 from M. tuberculosis H37Rv in ELISA and Western blot. These antibodies are new biological tools with the potential for the development of TB diagnosis helping to overcome limitations of the MPT64-based immunochromatographic tests currently available.

6.
Braz. arch. biol. technol ; Braz. arch. biol. technol;63: e20190090, 2020. graf
Article in English | LILACS | ID: biblio-1132173

ABSTRACT

Abstract DNA vaccines have been evaluated as an option to prevent several diseases. In this study, the capacity of the xanthan biopolymer to improve the DNA vaccines immune response, administered intramuscularly, was evaluated. The experimental vaccines consisted of genes encoding fragments of the proteins LigA and LigB of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Copenhageni strain Fiocruz L1-130. The humoral immune response was evaluated by indirect ELISA. Cytokine expression levels were determined by RT-qPCR. Compared to the control group, the IgG antibody levels of animals immunized with pTARGET/ligAni and pTARGET/ligBrep plasmids associated with xanthan biopolymer were significantly higher than the control group. Additionally, there was a significant increase in IL-17 expression in animals vaccinated with pTARGET/ligBrep and xanthan.


Subject(s)
Animals , Female , Mice , Polysaccharides, Bacterial , DNA, Recombinant/pharmacology , Adjuvants, Immunologic/pharmacology , Xanthomonas campestris , Vaccines, DNA/pharmacology , Biopolymers/pharmacology , Enzyme-Linked Immunosorbent Assay , Leptospira interrogans serovar icterohaemorrhagiae , Antibodies
7.
J Med Microbiol ; 66(2): 184-190, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28008823

ABSTRACT

PURPOSE: Saccharomyces boulardii may improve the immune response by enhancing the production of anti-inflammatory cytokines, T-cell proliferation and dendritic cell activation. The immunomodulator effect of this probiotic has never been tested with DNA vaccines, which frequently induce low antibody titers. This study evaluated the capacity of Saccharomyces boulardii to improve the humoral and cellular immune responses using DNA vaccines coding for the leptospiral protein fragments LigAni and LigBrep. BALB/c mice were fed with rodent-specific feed containing 108 c.f.u. of Saccharomycesboulardii per gram. METHODOLOGY: Animals were immunized three times intramuscularly with 100 µg of pTARGET plasmids containing the coding sequences for the above mentioned proteins. Antibody titers were measured by indirect ELISA. Expression levels of IL-4, IL-10, IL-12, IL-17, IFN-γ and TGF-ß were determined by quantitative real-time PCR from RNA extracted from whole blood, after an intraperitoneal boost with 50 µg of the recombinant proteins.Results/Key findings. Antibody titers increased significantly after the second and third application when pTARGET/ligAni and pTARGET/ligBrep were used to vaccinate the animals in comparison with the control group (P<0.05). In addition, there was a significant increase in the expression of the IL-10 in mice immunized with pTARGET/ligBrep and fed with Saccharomyces boulardii. CONCLUSION: The results suggested that Saccharomyces boulardii has an immunomodulator effect in DNA vaccines, mainly by stimulating the humoral response, which is often limited in this kind of vaccine. Therefore, the use of Saccharomyces boulardii as immunomodulator represents a new alternative strategy for more efficient DNA vaccination.


Subject(s)
Bacterial Vaccines/immunology , Immunity, Humoral , Leptospirosis/immunology , Saccharomyces boulardii , Vaccines, DNA/immunology , Animals , Bacterial Proteins/genetics , Cytokines/genetics , Cytokines/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Immunologic Factors/immunology , Leptospira , Leptospirosis/prevention & control , Mice , Mice, Inbred BALB C , Probiotics/administration & dosage , Recombinant Proteins/genetics
8.
PLoS One ; 11(8): e0160544, 2016.
Article in English | MEDLINE | ID: mdl-27489951

ABSTRACT

Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus.


Subject(s)
Antigens, Surface/immunology , Bacterial Proteins/immunology , Fructose-Bisphosphate Aldolase/immunology , Listeria/enzymology , Listeria/immunology , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Antigens, Surface/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Blotting, Western , Catalytic Domain , Cheese/microbiology , Cloning, Molecular , Dimerization , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Epitopes/immunology , Food Microbiology , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Listeria/isolation & purification , Mass Spectrometry , Peptides/analysis , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification
9.
Anaerobe ; 40: 58-62, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27236078

ABSTRACT

Botulinum neurotoxin (BoNT) serotypes C and D are responsible for cattle botulism, a fatal paralytic disease that results in great economic losses in livestock production. Vaccination is the main approach to prevent cattle botulism. However, production of commercially available vaccines (toxoids) involves high risk and presents variation of BoNT production between batches. Such limitations can be attenuated by the development of novel nontoxic recombinant vaccines through a simple and reproducible process. The aim of this study was to evaluate the protective potential of recombinant non-purified botulinum neurotoxin serotypes C and D. Bivalent vaccines containing 200 µg rHCC and rHCD each were formulated in three different ways: (1) purified antigens; (2) recombinant Escherichia coli bacterins; (3) recombinant E. coli cell lysates (supernatant and inclusion bodies). Guinea pigs immunized subcutaneously with recombinant formulations developed a protective immune response against the respective BoNTs as determined by a mouse neutralization bioassay with pooled sera. Purified recombinant antigens were capable of inducing 13 IU/mL antitoxin C and 21 IU/mL antitoxin D. Similarly, both the recombinant bacterins and the cell lysate formulations were capable of inducing 12 IU/mL antitoxin C and 20 IU/mL antitoxin D. These values are two times as high as compared to values induced by the commercial toxoid used as control, and two to ten times as high as the minimum amount required by the Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA), respectively. Therefore, we used a practical, industry-friendly, and efficient vaccine production process that resulted in formulations capable of inducing protective immune response (neutralizing antitoxins) against botulism serotypes C and D.


Subject(s)
Antibodies, Bacterial/blood , Antitoxins/blood , Bacterial Vaccines/administration & dosage , Botulinum Toxins, Type A/administration & dosage , Botulinum Toxins/administration & dosage , Botulism/prevention & control , Animals , Antibodies, Bacterial/biosynthesis , Antitoxins/biosynthesis , Bacterial Vaccines/biosynthesis , Bacterial Vaccines/immunology , Botulinum Toxins/biosynthesis , Botulinum Toxins/immunology , Botulinum Toxins, Type A/biosynthesis , Botulinum Toxins, Type A/immunology , Botulism/blood , Botulism/immunology , Clostridium botulinum/drug effects , Clostridium botulinum/genetics , Clostridium botulinum/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Guinea Pigs , Immunity, Humoral/drug effects , Mice , Recombinant Proteins/administration & dosage , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Vaccination , Vaccines, Synthetic
10.
Sci Rep ; 6: 22816, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-27004612

ABSTRACT

Clostridium perfringens is an anaerobic bacterium that produces several toxins. Of these, the alpha, beta, and epsilon toxins are responsible for causing the most severe C. perfringens-related diseases in farm animals. The best way to control these diseases is through vaccination. However, commercially available vaccines are based on inactivated toxins and have many production drawbacks, which can be overcome through the use of recombinant antigens. In this study, we produced recombinant alpha, beta, and epsilon toxins in Escherichia coli to formulate a trivalent vaccine. Its effectiveness was evaluated through a potency test in rabbits, in which the vaccine generated 9.6, 24.4, and 25.0 IU/mL of neutralizing antibodies against the respective toxins. Following this, cattle, sheep, and goats received the same formulation, generating, respectively, 5.19 ± 0.48, 4.34 ± 0.43, and 4.70 ± 0.58 IU/mL against alpha toxin, 13.71 ± 1.17 IU/mL (for all three species) against beta toxin, and 12.74 ± 1.70, 7.66 ± 1.69, and 8.91 ± 2.14 IU/mL against epsilon toxin. These levels were above the minimum recommended by international protocols. As such, our vaccine was effective in generating protective antibodies and, thus, may represent an interesting alternative for the prevention of C. perfringens-related intoxications in farm animals.


Subject(s)
Bacterial Toxins/immunology , Bacterial Vaccines/administration & dosage , Clostridium Infections/immunology , Clostridium Infections/veterinary , Clostridium perfringens/genetics , Recombinant Proteins/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Bacterial Toxins/genetics , Bacterial Vaccines/immunology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/immunology , Cattle , Cattle Diseases/immunology , Cattle Diseases/prevention & control , Clostridium Infections/prevention & control , Clostridium perfringens/immunology , Clostridium perfringens/metabolism , Female , Goat Diseases/immunology , Goat Diseases/prevention & control , Goats , Rabbits , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Sheep , Sheep Diseases/immunology , Sheep Diseases/prevention & control , Type C Phospholipases/genetics , Type C Phospholipases/immunology
11.
Trends Parasitol ; 30(9): 456-64, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25089038

ABSTRACT

Toxocariasis is a neglected zoonosis caused by the nematodes Toxocara canis and Toxocara cati. This disease is widespread in many countries, reaching high prevalence independently of the economic conditions. However, the true number of cases of toxocariasis is likely to be underestimated owing to the lack of adequate surveillance programs. Although some diagnostic tests are available, their sensitivity and specificity need to be improved. In addition, treatment options for toxocariasis are limited and are non-specific. Toxocariasis is listed as one of the five most important neglected diseases by the CDC. This review presents recent advances related to the control of toxocariasis, including new immunodiagnostics, therapies, and drug formulations, as well as novel interventions using DNA vaccines, immunomodulators, and probiotics.


Subject(s)
Toxocariasis/diagnosis , Toxocariasis/therapy , Animals , Humans , Immunologic Factors/therapeutic use , Immunologic Tests/trends , Neglected Diseases/diagnosis , Neglected Diseases/pathology , Neglected Diseases/prevention & control , Neglected Diseases/therapy , Probiotics , Toxocariasis/pathology , Toxocariasis/prevention & control , Toxocariasis/transmission , Vaccines, DNA
SELECTION OF CITATIONS
SEARCH DETAIL