Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
J Card Surg ; 37(9): 2592-2599, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35775747

ABSTRACT

BACKGROUND: Remote ischemic preconditioning (rIPC) has been applied to attenuate tissue injury. We tested the hypothesis that rIPC applied to fetal lambs undergoing cardiac bypass (CB) reduces fetal systemic inflammation and placental dysfunction. METHODS: Eighteen fetal lambs were divided into three groups: sham, CB control, and CB rIPC. CB rIPC fetuses had a hindlimb tourniquet applied to occlude blood flow for four cycles of a 5-min period, followed by a 2-min reperfusion period. Both study groups underwent 30 min of normothermic CB. Fetal inflammatory markers, gas exchange, and placental and fetal lung morphological changes were assessed. RESULTS: The CB rIPC group achieved higher bypass flow rates (p < .001). After CB start, both study groups developed significant decreases in PaO2 , mixed acidosis, and increased lactate levels (p < .0004). No significant differences in tissular edema were observed on fetal lungs and placenta (p > .391). Expression of Toll-like receptor 4 and intercellular adhesion molecule-1 in the placenta and fetal lungs did not differ among the three groups, as well as with vascular cell adhesion molecule-1 (VCAM-1) of fetal lungs (p > .225). Placental VCAM-1 expression was lower in the rIPC group (p < .05). Fetal interleukin-1 (IL-1) and thromboxane A2 (TXA2) levels were lower at 60 min post-CB in the CB rIPC group (p < .05). There were no significant differences in tumor necrosis factor-α, prostaglandin E2, IL-6, and IL-10 plasma levels of the three groups at 60-min post-bypass (p > .133). CONCLUSION: Although rIPC allowed increased blood flow during fetal CB and decreased IL-1 and TXA2 levels and placental VCAM-1, it did not prevent placental dysfunction in fetal lambs undergoing CB.


Subject(s)
Ischemic Preconditioning , Vascular Cell Adhesion Molecule-1 , Animals , Female , Fetus , Interleukin-1 , Placenta , Pregnancy , Sheep
3.
Transplantation ; 106(2): 289-298, 2022 02 01.
Article in English | MEDLINE | ID: mdl-33859149

ABSTRACT

BACKGROUND: Brain death (BD) is associated with systemic inflammatory compromise, which might affect the quality of the transplanted organs. This study investigated the expression profile of cardiac microRNAs (miRNAs) after BD, and their relationship with the observed decline in myocardial function and with the changes induced by hypertonic saline solution (HSS) treatment. METHODS: Wistar rats were assigned to sham-operation (SHAM) or submitted to BD with and without the administration of HSS. Cardiac function was assessed for 6 h with left ventricular (LV) pressure-volume analysis. We screened 641 rodent miRNAs to identify differentially expressed miRNAs in the heart, and computational and functional analyses were performed to compare the differentially expressed miRNAs and find their putative targets and their related enriched canonical pathways. RESULTS: An enhanced expression in canonical pathways related to inflammation and myocardial apoptosis was observed in BD induced group, with 2 miRNAs, miR-30a-3p, and miR-467f, correlating with the level of LV dysfunction observed after BD. Conversely, HSS treated after BD and SHAM groups showed similar enriched pathways related to the maintenance of heart homeostasis regulation, in agreement with the observation that both groups did not have significant changes in LV function. CONCLUSIONS: These findings highlight the potential of miRNAs as biomarkers for assessing damage in BD donor hearts and to monitor the changes induced by therapeutic measures like HSS, opening a perspective to improve graft quality and to better understand the pathophysiology of BD. The possible relation of BD-induced miRNA's on early and late cardiac allograft function must be investigated.


Subject(s)
Heart Transplantation , MicroRNAs , Animals , Brain Death , Heart Transplantation/adverse effects , Humans , MicroRNAs/genetics , Rats , Rats, Wistar , Saline Solution, Hypertonic/pharmacology , Saline Solution, Hypertonic/therapeutic use , Tissue Donors
5.
Mater Sci Eng C Mater Biol Appl ; 121: 111834, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33579472

ABSTRACT

It is known that guanosine derivatives (G) self-assemble in water forming long, flexible, and interacting aggregates (the so-called G-quadruplexes): by modulating the quadruplex charges, e.g. simply using a mixture of guanosine 5'-monophosphate (GMP) and guanosine (Gua), multi-responsive, self-healing hydrogels can be obtained. In this paper, the potential application of G-hydrogels as drug delivery systems has been assessed. Hydrogels were prepared at different Gua:GMP molar ratios. The photosensitizer Methylene Blue and the pro-apoptotic protein cytochrome C were used as cargo molecules. Small angle x-ray scattering and atomic force microscopy experiments confirmed the presence of G-quadruplexes disposed in swollen matrices with different mesh-sizes. Rheology measurements showed that the Gua:GMP molar ratio leads to specific drug release mechanisms, as the gel strength is finely tuned by electrostatic repulsion and van der Waals attraction between G-quadruplexes. Noteworthy, the gel cohesion and the drug release were pH responsive. Swelling, self-healing and cell viability features were also investigated: the results qualify the Gua:GMP hydrogel as an excellent biomaterial that can entrap and deliver key biomolecules in a sustained and responsive release manner.


Subject(s)
Hydrogels , Methylene Blue , Delayed-Action Preparations , Drug Delivery Systems , Drug Liberation , Guanosine , Hydrogen-Ion Concentration
6.
Clinics (Sao Paulo) ; 76: e1958, 2021.
Article in English | MEDLINE | ID: mdl-33503174

ABSTRACT

OBJECTIVES: To evaluate the effects of sympathectomy on the myocardium in an experimental model. METHODS: The study evaluated three groups of male Wistar rats: control (CT; n=15), left unilateral sympathectomy (UNI; n=15), and bilateral sympathectomy (BIL; n=31). Sympathectomy was performed by injection of absolute alcohol into the space of the spinous process of the C7 vertebra. After 6 weeks, we assessed the chronotropic properties at rest and stress, cardiovascular autonomic modulation, myocardial and peripheral catecholamines, and beta-adrenergic receptors in the myocardium. The treadmill test consisted of an escalated protocol with a velocity increment until the maximal velocity tolerated by the animal was reached. RESULTS: The bilateral group had higher levels of peripheral catecholamines, and consequently, a higher heart rate (HR) and blood pressure levels. This suggests that the activation of a compensatory pathway in this group may have deleterious effects. The BIL group had basal tachycardia immediately before the exercise test and increased tachycardia at peak exercise (p<0.01); the blood pressure had the same pattern (p=0.0365). The variables related to autonomic modulation were not significantly different between groups, with the exception of the high frequency (HF) variable, which showed significant differences in CT vs UNI. There was no significant difference in beta receptor expression between groups. There was a higher concentration of peripheral norepinephrine in the BIL group (p=0.0001), and no significant difference in myocardial norepinephrine (p=0.09). CONCLUSION: These findings suggest that an extra cardiac compensatory pathway increases the sympathetic tonus and maintains a higher HR and higher levels of peripheral catecholamines in the procedure groups. The increase in HF activity can be interpreted as an attempt to increase the parasympathetic tonus to balance the greater sympathetic activity.


Subject(s)
Myocardium , Sympathectomy , Animals , Blood Pressure , Heart Rate , Male , Rats , Rats, Wistar
7.
Clinics ; 76: e1958, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153932

ABSTRACT

OBJECTIVES: To evaluate the effects of sympathectomy on the myocardium in an experimental model. METHODS: The study evaluated three groups of male Wistar rats: control (CT; n=15), left unilateral sympathectomy (UNI; n=15), and bilateral sympathectomy (BIL; n=31). Sympathectomy was performed by injection of absolute alcohol into the space of the spinous process of the C7 vertebra. After 6 weeks, we assessed the chronotropic properties at rest and stress, cardiovascular autonomic modulation, myocardial and peripheral catecholamines, and beta-adrenergic receptors in the myocardium. The treadmill test consisted of an escalated protocol with a velocity increment until the maximal velocity tolerated by the animal was reached. RESULTS: The bilateral group had higher levels of peripheral catecholamines, and consequently, a higher heart rate (HR) and blood pressure levels. This suggests that the activation of a compensatory pathway in this group may have deleterious effects. The BIL group had basal tachycardia immediately before the exercise test and increased tachycardia at peak exercise (p<0.01); the blood pressure had the same pattern (p=0.0365). The variables related to autonomic modulation were not significantly different between groups, with the exception of the high frequency (HF) variable, which showed significant differences in CT vs UNI. There was no significant difference in beta receptor expression between groups. There was a higher concentration of peripheral norepinephrine in the BIL group (p=0.0001), and no significant difference in myocardial norepinephrine (p=0.09). CONCLUSION: These findings suggest that an extra cardiac compensatory pathway increases the sympathetic tonus and maintains a higher HR and higher levels of peripheral catecholamines in the procedure groups. The increase in HF activity can be interpreted as an attempt to increase the parasympathetic tonus to balance the greater sympathetic activity.


Subject(s)
Animals , Male , Rats , Sympathectomy , Myocardium , Blood Pressure , Rats, Wistar , Heart Rate
8.
Pulm Pharmacol Ther ; 61: 101901, 2020 04.
Article in English | MEDLINE | ID: mdl-32044433

ABSTRACT

BACKGROUND: Lung transplantation is a treatment method for end stage lung disease, but the availability of donor lungs remains a major constraint. Brain death (BD) induces hemodynamic instability with microcirculatory hypoperfusion and increased inflammation, leading to pulmonary dysfunction. Hypertonic saline solution (HSS) is a volume expander possessing immunomodulatory effects. This study evaluated the influence of HSS on pulmonary dysfunction and inflammation in a rat model of BD. METHODS: BD was induced by inflation of an intracranial balloon catheter. Rats were divided into [1]: Sham, without BD [2]; NS, NaCl treatment (0.9%, 4 mL/kg, i.v.) immediately after BD [3]; HSS1, HSS treatment (NaCl 7.5%, 4 mL/kg, i.v.) immediately after BD; and [4] HSS60, HSS treatment 60 min post BD. All groups were analyzed after 360 min. RESULTS: Animals subjected to BD exhibited increased exhaled O2 and decreased CO2.The number of leukocytes in the lungs was significantly increased in the NS group (p = 0.002) and the HSS treatment was able to reduce it (HSS1, p = 0.018 and HSS60 = 0.030). In parallel, HSS-treated rats showed reduced levels of ICAM-1 expression, which was increased in the NS compared to Sham group. Lung edema was found increased in the NS group animals compared to Sham and no effect of the HSS treatment was observed. There were no differences among the groups in terms of TNF-α, VEGF, and CINC-1 lung concentrations. CONCLUSIONS: HSS is capable of reducing inflammatory cell infiltration into the lung after BD induction, which is associated with the reduction of ICAM-1 expression in organ vessels.


Subject(s)
Brain Death , Lung/physiopathology , Saline Solution, Hypertonic/therapeutic use , Animals , Arterial Pressure , Chemokine CXCL1/metabolism , Edema , Endothelin-1/metabolism , Intercellular Adhesion Molecule-1/metabolism , Lung/metabolism , Lung/pathology , Lung Transplantation , Male , Nitric Oxide Synthase Type III/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor A/metabolism
9.
J Surg Res ; 235: 8-15, 2019 03.
Article in English | MEDLINE | ID: mdl-30691854

ABSTRACT

BACKGROUND: Brain death (BD) in potential organ donors is responsible for hemodynamic instability and organ hypoperfusion, leading to myocardial dysfunction. Hypertonic saline (HS) is a volume expander with positive effects on hemodynamics and immunomodulation and was tested in this study to prevent left ventricular (LV) dysfunction and myocardial injury. METHODS: BD was induced in anesthetized Wistar rats by inflating a subdural balloon catheter, except in sham-operated animals (n = 6). After BD induction, Control animals received only normal saline solution (NaCl 0.9%, 4 mL/kg; n = 6), and treated animals were divided to receive HS (NaCl, 7.5% 4 mL/kg) at 1 min (HS1, n = 6) or 60 min (HS60, n = 6) thereafter. We continuously assessed cardiac function for 6 h with LV pressure-volume analysis. Inflammatory response, markers of myocardial injury, and cellular apoptosis-related proteins were investigated. RESULTS: BD was associated with decreased LV systolic and diastolic function. In comparison with the Control group, HS treatments improved LV ejection fraction (HS1, 51% [40-66]; HS60, 71% [28-82]; Control, 46% [23-55]; P < 0.05) and other parameters of LV systolic function 6 h after BD induction. However, no ventricular relaxation advantages were observed during the same period. HS treatments increased antiapoptotic protein expression and decreased vascular adhesion molecule and tumor necrosis factor alpha expression. No significant differences in histologic or structural protein changes were observed between groups. CONCLUSIONS: The observed data suggest that HS ameliorates LV systolic dysfunction and seems to reduce myocardial tissue compromise in BD rats, even when the treatment is performed during the process triggered by this event.


Subject(s)
Brain Death/physiopathology , Myocardium/pathology , Saline Solution, Hypertonic/therapeutic use , Ventricular Dysfunction, Left/prevention & control , Animals , Brain Death/pathology , Hemodynamics/drug effects , Male , Rats , Rats, Wistar , Sodium/blood
10.
J Heart Lung Transplant ; 37(11): 1381-1387, 2018 11.
Article in English | MEDLINE | ID: mdl-30139547

ABSTRACT

BACKGROUND: Brain death elicits microvascular dysfunction and inflammation, and thereby compromises lung viability for transplantation. As 17ß-estradiol was shown to be anti-inflammatory and vascular protective, we investigated its effects on lung injury after brain death in male rats. METHODS: Wistar rats were assigned to: sham-operation by trepanation only (SH, n = 7); brain death (BD, n = 7); administration of 17ß-estradiol (280 µg/kg, iv) at 60 minutes after brain death (BD-E2, n = 7). Experiments were performed 180 minutes thereafter. Histopathological changes in the lung were evaluated by histomorphometry. Gene expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and endothelin-1 was measured by real-time polymerase chain reaction. Protein expression of NO synthases, endothelin-1, platelet endothelial cell adhesion molecule-1 (PECAM-1), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), BCL-2, and caspase 3 was assessed by immunohistochemistry. Cytokines were quantified by enzyme-linked immunosorbent assay. RESULTS: Treatment with 17ß-estradiol after brain death decreased lung edema and hemorrhage (p < 0.0001), and serum levels of cytokine-induced neutrophil chemoattractant-1 (CINC-1; p = 0.0020). iNOS (p < 0.0001) and VCAM-1 (p < 0.0001) also diminished at protein levels, while eNOS accumulated (p = 0.0002). However, gene expression of iNOS, eNOS, and endothelin-1 was comparable among groups, as was protein expression of endothelin-1, ICAM-1, BCL-2, and caspase 3. CONCLUSIONS: 17ß-Estradiol effectively reduces lung injury in brain-dead rats mainly due to its ability to regulate NO synthases. Thus, the drug may improve lung viability for transplantation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Brain Death/pathology , Estradiol/pharmacology , Lung Injury/prevention & control , Lung Transplantation , Animals , Chemokine CXCL1/blood , Hemorrhage/pathology , Hemorrhage/prevention & control , Lung Diseases/pathology , Lung Diseases/prevention & control , Lung Injury/pathology , Male , Nitric Oxide Synthase Type II/blood , Nitric Oxide Synthase Type III/blood , Pulmonary Edema/pathology , Pulmonary Edema/prevention & control , Rats , Rats, Wistar , Vascular Cell Adhesion Molecule-1/blood
12.
Tissue Eng Part C Methods ; 23(12): 850-862, 2017 12.
Article in English | MEDLINE | ID: mdl-28756735

ABSTRACT

Animal experimentation requires a solid and rational moral foundation. Objective and emphatic decision-making and protocol evaluation by researchers and ethics committees remain a difficult and sensitive matter. This article presents three perspectives that facilitate a consideration of the minimally acceptable standard for animal experiments, in particular, in tissue engineering (TE) and regenerative medicine. First, we review the boundaries provided by law and public opinion in America and Europe. Second, we review contemporary moral theory to introduce the Neo-Rawlsian contractarian theory to objectively evaluate the ethics of animal experiments. Third, we introduce the importance of available reduction, replacement, and refinement strategies, which should be accounted for in moral decision-making and protocol evaluation of animal experiments. The three perspectives are integrated into an algorithmic and graphic harm-benefit analysis tool based on the most relevant aspects of animal models in TE. We conclude with a consideration of future avenues to improve animal experiments.


Subject(s)
Models, Animal , Tissue Engineering/ethics , Tissue Engineering/legislation & jurisprudence , Animals , Developed Countries
13.
Int J Exp Pathol ; 98(3): 158-165, 2017 06.
Article in English | MEDLINE | ID: mdl-28749083

ABSTRACT

Experimental findings support the evidence of a persistent leucopenia triggered by brain death (BD). This study aimed to investigate leucocyte behaviour in bone marrow and blood after BD in rats. BD was induced using intracranial balloon catheter inflation. Sham-operated (SH) rats were trepanned only. Thereafter bone marrow cells were harvested every six hours from the femoral cavity and used for total and differential counts. They were analysed further by flow cytometry to characterize lymphocyte subsets, granulocyte adhesion molecules expression and apoptosis/necrosis [annexin V/propidium iodide (PI) protocol]. BD rats exhibited a reduction in bone marrow cells due to a reduction in lymphocytes (40%) and segmented cells (45%). Bone marrow lymphocyte subsets were similar in BD and SH rats (CD3, P = 0.1; CD4, P = 0.4; CD3/CD4, P = 0.4; CD5, P = 0.4, CD3/CD5, P = 0.2; CD8, P = 0.8). Expression of L-selectin and beta2 -integrins on granulocytes did not differ (CD11a, P = 0.9; CD11b/c, P = 0.7; CD62L, P = 0.1). There were no differences in the percentage of apoptosis and necrosis (Annexin V, P = 0.73; PI, P = 0.21; Annexin V/PI, P = 0.29). In conclusion, data presented suggest that the downregulation of the bone marrow is triggered by brain death itself, and it is not related to changes in lymphocyte subsets, granulocyte adhesion molecules expression or apoptosis and necrosis.


Subject(s)
Bone Marrow Cells/pathology , Brain Death/pathology , Animals , Apoptosis , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Brain Death/immunology , Brain Death/metabolism , Cell Adhesion Molecules/metabolism , Disease Models, Animal , Down-Regulation , Granulocytes/metabolism , Hemodynamics/physiology , Leukocyte Count , Leukopenia/etiology , Lymphocyte Subsets/immunology , Male , Necrosis , Rats, Wistar
18.
J Thorac Cardiovasc Surg ; 153(4): 855-863.e1, 2017 04.
Article in English | MEDLINE | ID: mdl-27998611

ABSTRACT

OBJECTIVES: To evaluate the influence of bilateral or left sympathectomy on left ventricular remodeling and function after myocardial infarction in rats. METHODS: Myocardial infarction was induced in rats by ligation of the left anterior descending coronary. Seven days later, rats were divided into 4 groups: the myocardial infarction, myocardial infarction with left sympathectomy, myocardial infarction with bilateral sympathectomy, and sham groups. After 8 weeks, left ventricular function was evaluated with the use of a pressure-volume conductance catheter under steady-state conditions and pharmacological stress. Infarct size and extracellular matrix fibrosis were evaluated, and cardiac matrix metalloproteinases and myocardial inflammatory markers were analyzed. RESULTS: The myocardial infarction and left sympathectomy group had an increased end diastolic volume, whereas the bilateral sympathectomy group had a mean end-diastolic volume similar to that of the sham group (P < .002). Significant reduction in ejection fraction was observed in the myocardial infarction and left sympathectomy group, whereas it was preserved after bilateral sympathectomy (P < .001). In response to dobutamine, left ventricular contractility increased in sham rats, rising stroke work, cardiac output, systolic volume, end-diastolic volume, ejection fraction, and dP/dt max. Only bilateral sympathectomy rats had significant increases in ejection fraction (P < .001) with dobutamine. Fibrotic tissue and matrix metalloproteinase expression decreased in the bilateral sympathectomy group compared to that in the myocardial infarction group (P < .001) and was associated with left ventricular wall thickness maintenance and better apoptotic markers in noninfarcted myocardium. CONCLUSIONS: Bilateral sympathectomy effectively attenuated left ventricular remodeling and preserved systolic function after myocardial infarction induction in rats.


Subject(s)
Heart Ventricles/innervation , Myocardial Infarction/surgery , Sympathectomy/methods , Ventricular Function, Left , Ventricular Remodeling , Animals , Apoptosis , Catecholamines/metabolism , Cytokines/metabolism , Disease Models, Animal , Fibrosis , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Myocardial Contraction , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Natriuretic Peptide, Brain/metabolism , Rats, Wistar , Recovery of Function , Stroke Volume , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...