Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Front Immunol ; 12: 744183, 2021.
Article in English | MEDLINE | ID: mdl-34659240

ABSTRACT

The immunopathogenesis of chikungunya virus (CHIKV) infection and the role of acute-phase immune response on joint pain persistence is not fully understood. We investigated the profile of serum chemokine and cytokine in CHIKV-infected patients with acute disease, compared the levels of these biomarkers to those of patients with other acute febrile diseases (OAFD) and healthy controls (HC), and evaluated their role as predictors of chronic arthralgia development. Chemokines and cytokines were measured by flow Cytometric Bead Array. Patients with CHIKV infection were further categorized according to duration of arthralgia (≤ 3 months vs >3 months), presence of anti-CHIKV IgM at acute-phase sample, and number of days of symptoms at sample collection (1 vs 2-3 vs ≥4). Patients with acute CHIKV infection had significantly higher levels of CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-1ß, IL-6, IL-12, and IL-10 as compared to HC. CCL2, CCL5, and CXCL10 levels were also significantly higher in patients with CHIKV infection compared to patients with OAFD. Patients whose arthralgia lasted > 3 months had increased CXCL8 levels compared to patients whose arthralgia did not (p<0.05). Multivariable analyses further indicated that high levels of CXCL8 and female sex were associated with arthralgia lasting >3 months. Patients with chikungunya and OAFD had similar cytokine kinetics for IL-1ß, IL-12, TNF, IFN-γ, IL-2, and IL-4, although the levels were lower for CHIKV patients. This study suggests that chemokines may have an important role in the immunopathogenesis of chronic chikungunya-related arthralgia.


Subject(s)
Arthralgia/immunology , Chikungunya Fever/immunology , Interleukin-8/blood , Acute-Phase Reaction/blood , Acute-Phase Reaction/immunology , Adolescent , Adult , Arthralgia/blood , Chikungunya Fever/blood , Chikungunya Fever/complications , Chronic Disease , Female , Humans , Male , Middle Aged , Risk Factors , Young Adult
3.
Parasit Vectors ; 10(1): 328, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28697811

ABSTRACT

BACKGROUND: Aedes aegypti, the principal vector for dengue, chikungunya and Zika viruses, is a synanthropic species that uses stagnant water to complete its reproductive cycle. In urban settings, rainfall water draining structures, such as storm drains, may retain water and serve as a larval development site for Aedes spp. reproduction. Herein, we describe the effect of a community-based intervention on preventing standing water accumulation in storm drains and their consequent infestation by adult and immature Ae. aegypti and other mosquitoes. METHODS: Between April and May of 2016, local residents association of Salvador, Brazil, after being informed of water accumulation and Ae. aegypti infestation in the storm drains in their area, performed an intervention on 52 storm drains. The intervention consisted of placing concrete at the bottom of the storm drains to elevate their base to the level of the outflow tube, avoiding water accumulation, and placement of a metal mesh covering the outflow tube to avoid its clogging with debris. To determine the impact of the intervention, we compared the frequency at which the 52 storm drains contained water, as well as adult and immature mosquitoes using data from two surveys performed before and two surveys performed after the intervention. RESULTS: During the pre-intervention period, water accumulated in 48 (92.3%) of the storm drains, and immature Ae. aegypti were found in 11 (21.2%) and adults in 10 (19.2%). After the intervention, water accumulated in 5 (9.6%) of the storm drains (P < 0.001), none (0.0%) had immatures (P < 0.001), and 3 (5.8%) contained adults (P = 0.039). The total number of Ae. aegypti immatures collected decreased from 109 to 0 (P < 0.001) and adults decreased from 37 to 8 (P = 0.011) after the intervention. Collection of immature and adult non-Aedes mosquitoes (mainly Culex spp.) in the storm drains also decreased after the intervention. CONCLUSION: This study exemplifies how a simple intervention targeting storm drains can result in a major reduction of water retention, and, consequently, impact Ae. aegypti larval populations. Larger and multi-center evaluations are needed to confirm the potential of citywide structural modifications of storm drains to reduce Aedes spp. infestation level.


Subject(s)
Aedes/physiology , Chikungunya Fever/prevention & control , Dengue Virus/physiology , Dengue/prevention & control , Insect Vectors/physiology , Aedes/virology , Animals , Brazil , Chikungunya Fever/virology , Culex/physiology , Culex/virology , Dengue/virology , Drainage, Sanitary , Entomology , Insect Vectors/virology , Larva , Mosquito Control , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...