Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinform Adv ; 4(1): vbae026, 2024.
Article in English | MEDLINE | ID: mdl-38645716

ABSTRACT

Motivation: Trajectories, which are sequentially measured quantities that form a path, are an important presence in many different fields, from hadronic beams in physics to electrocardiograms in medicine. Trajectory analysis requires the quantification and classification of curves, either by using statistical descriptors or physics-based features. To date, no extensive and user-friendly package for trajectory analysis has been readily available, despite its importance and potential application across various domains. Results: We have developed TrajPy, a free, open-source Python package that serves as a complementary tool for empowering trajectory analysis. This package features a user-friendly graphical user interface and offers a set of physical descriptors that aid in characterizing these complex structures. TrajPy has already been successfully applied to studies of mitochondrial motility in neuroblastoma cell lines and the analysis of in silico models for cell migration, in combination with image analysis. Availability and implementation: The TrajPy package is developed in Python 3 and is released under the GNU GPL-3.0 license. It can easily be installed via PyPi, and the development source code is accessible at the repository: https://github.com/ocbe-uio/TrajPy/. The package release is also automatically archived with the DOI 10.5281/zenodo.3656044.

2.
Commun Biol ; 6(1): 1132, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938268

ABSTRACT

Germline mutations of E-cadherin cause Hereditary Diffuse Gastric Cancer (HDGC), a highly invasive cancer syndrome characterised by the occurrence of diffuse-type gastric carcinoma and lobular breast cancer. In this disease, E-cadherin-defective cells are detected invading the adjacent stroma since very early stages. Although E-cadherin loss is well established as a triggering event, other determinants of the invasive process persist largely unknown. Herein, we develop an experimental strategy that comprises in vitro extrusion assays using E-cadherin mutants associated to HDGC, as well as mathematical models epitomising epithelial dynamics and its interaction with the extracellular matrix (ECM). In vitro, we verify that E-cadherin dysfunctional cells detach from the epithelial monolayer and extrude basally into the ECM. Through phase-field modelling we demonstrate that, aside from loss of cell-cell adhesion, increased ECM attachment further raises basal extrusion efficiency. Importantly, by combining phase-field and vertex model simulations, we show that the cylindrical structure of gastric glands strongly promotes the cell's invasive ability. Moreover, we validate our findings using a dissipative particle dynamics simulation of epithelial extrusion. Overall, we provide the first evidence that cancer cell invasion is the outcome of defective cell-cell linkages, abnormal interplay with the ECM, and a favourable 3D tissue structure.


Subject(s)
Adenocarcinoma , Stomach Neoplasms , Humans , Cadherins/genetics , Extracellular Matrix , Cell Adhesion , Stomach Neoplasms/genetics
3.
Front Oncol ; 13: 1048593, 2023.
Article in English | MEDLINE | ID: mdl-36798825

ABSTRACT

Patients surviving head and neck cancer (HNC) suffer from high physical, psychological, and socioeconomic burdens. Achieving cancer-free survival with an optimal quality of life (QoL) is the primary goal for HNC patient management. So, maintaining lifelong surveillance is critical. An ambitious goal would be to carry this out through the advanced analysis of environmental, emotional, and behavioral data unobtrusively collected from mobile devices. The aim of this clinical trial is to reduce, with non-invasive tools (i.e., patients' mobile devices), the proportion of HNC survivors (i.e., having completed their curative treatment from 3 months to 10 years) experiencing a clinically relevant reduction in QoL during follow-up. The Big Data for Quality of Life (BD4QoL) study is an international, multicenter, randomized (2:1), open-label trial. The primary endpoint is a clinically relevant global health-related EORTC QLQ-C30 QoL deterioration (decrease ≥10 points) at any point during 24 months post-treatment follow-up. The target sample size is 420 patients. Patients will be randomized to be followed up using the BD4QoL platform or per standard clinical practice. The BD4QoL platform includes a set of services to allow patients monitoring and empowerment through two main tools: a mobile application installed on participants' smartphones, that includes a chatbot for e-coaching, and the Point of Care dashboard, to let the investigators manage patients data. In both arms, participants will be asked to complete QoL questionnaires at study entry and once every 6 months, and will undergo post-treatment follow up as per clinical practice. Patients randomized to the intervention arm (n=280) will receive access to the BD4QoL platform, those in the control arm (n=140) will not. Eligibility criteria include completing curative treatments for non-metastatic HNC and the use of an Android-based smartphone. Patients undergoing active treatments or with synchronous cancers are excluded. Clinical Trial Registration: ClinicalTrials.gov, identifier (NCT05315570).

4.
FASEB J ; 35(12): e22024, 2021 12.
Article in English | MEDLINE | ID: mdl-34751984

ABSTRACT

Alterations in mitochondrial dynamics, including their intracellular trafficking, are common early manifestations of neuronal degeneration. However, current methodologies used to study mitochondrial trafficking events rely on parameters that are primarily altered in later stages of neurodegeneration. Our objective was to establish a reliable applied statistical analysis to detect early alterations in neuronal mitochondrial trafficking. We propose a novel quantitative analysis of mitochondria trajectories based on innovative movement descriptors, including straightness, efficiency, anisotropy, and kurtosis. We evaluated time- and dose-dependent alterations in trajectory descriptors using biological data from differentiated SH-SY5Y cells treated with the mitochondrial toxicants 6-hydroxydopamine and rotenone. MitoTracker Red CMXRos-labelled mitochondria movement was analyzed by total internal reflection fluorescence microscopy followed by computational modelling to describe the process. Based on the aforementioned trajectory descriptors, this innovative analysis of mitochondria trajectories provides insights into mitochondrial movement characteristics and can be a consistent and sensitive method to detect alterations in mitochondrial trafficking occurring in the earliest time points of neurodegeneration.


Subject(s)
Mitochondria/pathology , Mitochondrial Dynamics , Neuroblastoma/pathology , Neurons/pathology , Oxidopamine/adverse effects , Rotenone/adverse effects , Adrenergic Agents/adverse effects , Cell Differentiation , Humans , Mitochondria/drug effects , Neuroblastoma/chemically induced , Neurons/drug effects , Uncoupling Agents/adverse effects
5.
J Phys Condens Matter ; 32(31): 314001, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32378515

ABSTRACT

One of the most fundamental abilities required for the sustainability of complex life forms is active cell migration, since it is essential in diverse processes from morphogenesis to leukocyte chemotaxis in immune response. The movement of a cell is the result of intricate mechanisms, that involve the coordination between mechanical forces, biochemical regulatory pathways and environmental cues. In particular, epithelial cancer cells have to employ mechanical strategies in order to migrate through the tissue's basement membrane and infiltrate the bloodstream during the invasion stage of metastasis. In this work we explore how mechanical interactions such as spatial restriction and adhesion affect migration of a self-propelled droplet in dense fibrous media. We have performed a systematic analysis using a phase-field model and we propose a novel approach to simulate cell migration with dissipative particle dynamics modelling. With this purpose we have measured in our simulation the cell's velocity and quantified its morphology as a function of the fibre density and of its adhesiveness to the matrix fibres. Furthermore, we have compared our results to a previous in vitro migration assay of fibrosarcoma cells in fibrous matrices. The results show good agreement between the two methodologies and experiments in the literature, which indicates that these minimalist descriptions are able to capture the main features of the system. Our results indicate that adhesiveness is critical for cell migration, by modulating cell morphology in crowded environments and by enhancing cell velocity. In addition, our analysis suggests that matrix metalloproteinases (MMPs) play an important role as adhesiveness modulators. We propose that new assays should be carried out to address the role of adhesion and the effect of different MMPs in cell migration under confined conditions.

6.
Sci Rep ; 8(1): 8726, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29880828

ABSTRACT

Angiogenesis - the growth of new blood vessels from a pre-existing vasculature - is key in both physiological processes and on several pathological scenarios such as cancer progression or diabetic retinopathy. For the new vascular networks to be functional, it is required that the growing sprouts merge either with an existing functional mature vessel or with another growing sprout. This process is called anastomosis. We present a systematic 2D and 3D computational study of vessel growth in a tissue to address the capability of angiogenic factor gradients to drive anastomosis formation. We consider that these growth factors are produced only by tissue cells in hypoxia, i.e. until nearby vessels merge and become capable of carrying blood and irrigating their vicinity. We demonstrate that this increased production of angiogenic factors by hypoxic cells is able to promote vessel anastomoses events in both 2D and 3D. The simulations also verify that the morphology of these networks has an increased resilience toward variations in the endothelial cell's proliferation and chemotactic response. The distribution of tissue cells and the concentration of the growth factors they produce are the major factors in determining the final morphology of the network.


Subject(s)
Angiogenesis Inducing Agents/metabolism , Computer Simulation , Diabetic Retinopathy/metabolism , Models, Cardiovascular , Neoplasms/blood supply , Neoplasms/metabolism , Retinal Neovascularization/metabolism , Animals , Diabetic Retinopathy/pathology , Humans , Neoplasms/pathology , Retinal Neovascularization/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...